$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Guillaume de l'Hospital (1661 [Paris] - 2 février 1704 [Paris])

Guillaume de L'Hospital, marquis de Saint Mesme, est un élève de Jean Bernoulli qui lui apprend le calcul différentiel. C'est ainsi que L'Hospital est le premier à écrire un traité sur ce nouvel outil, le livre Analyse des infiniment petits pour l'intelligence des lignes courbes (1696). C'est dans ce livre qu'apparait la célèbre règle de L'Hospital, qui permet parfois de lever des formes indéterminées du type 0/0. En 1707, L'Hospital publie également un traité sur les coniques (Traité analytique des sections coniques), qui sera pendant un siècle un classique du genre.

La connaissance du calcul différentiel fait que L'Hospital est un de ceux qui résout le problème de la brachistochrone, indépendamment de mathématiciens prestigieux comme Newton ou Leibniz. Toutefois, ce mérite est entâché par les déclarations, après la mort de son élève, de Jean Bernoulli : à la suite d'un arrangement financier, L'Hospital aurait publié sous son propre nom des résultats dus à Bernoulli.

Les entrées du Dicomaths correspondant à Hospital

Les mathématiciens contemporains de Hospital (né en 1661)