Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 05-01-2025 17:27:57

bridgslam
Membre
Lieu : Rospez
Inscription : 22-11-2011
Messages : 1 581

Clignotage

Bonjour ,

Avant que toutes les guirlandes des fêtes soient rangées, et les papiers d'emballage à la poubelle, je vous propose les deux petits dilemmes suivant:

Une guirlande clignotante est conçue pour briller une demi-seconde, puis s'éteindre un quart de seconde , puis briller 1/8 de seconde etc... Le processus commence à 0 s.
Au temps t=1s, est-elle allumée ou éteinte?

Victor a chiffonné le papier qui tapissait le fond d'une boîte contenant son cadeau, puis  ne sachant qu'en faire, l'a jeté négligemment au fond de la boîte.
Est-il vraie qu'un point au moins du papier se retrouve à la verticale du point qu'il occupait lorsqu'il était à plat?

Alain


"Ceux qui ne savent rien en savent toujours autant que ceux qui n'en savent pas plus qu'eux" -Pierre Dac
"Travailler sur un groupe haddock, ou être heureux comme un poisson dans l'eau..."

Hors ligne

#2 05-01-2025 19:36:56

Roro
Membre expert
Inscription : 07-10-2007
Messages : 1 666

Re : Clignotage

Bonsoir,

Pour le 1, je n'ai pas encore terminé le calcul :

Texte caché

A la fin ça clignote tellement que j'en ai plein les yeux ! Et encore, je ne suis pas à $1$ seconde... mais je m'en approche.
Peut être que Schrödinger dirait que la lumière clignote et ne clignote pas en même temps ?

Pour le 2 c'est plus compliqué :

Texte caché

A part évoquer le théorème de point fixe de Brouwer qui n'est rien sauf trivial, je n'ai pas d'explication simple.

Roro.

Dernière modification par Roro (05-01-2025 19:38:28)

Hors ligne

#3 05-01-2025 19:40:46

Zebulor
Membre expert
Inscription : 21-10-2018
Messages : 2 184

Re : Clignotage

Bonsoir,
c'est très original ! le premier dilemme me rend très inconfortable psychologiquement... :-)


En matière d'intégrales impropres les intégrales les plus sales sont les plus instructives.

Hors ligne

#4 05-01-2025 21:21:51

bridgslam
Membre
Lieu : Rospez
Inscription : 22-11-2011
Messages : 1 581

Re : Clignotage

Bonjour,

Merci pour vos idées.

guirlande

On ne peut évidemment rien dire, et tout est possible,
puisqu'on ne connait que l'état des lampes avant 1s.
Physiquement les choses deviennent débiles au bout d'un moment, un allumage ou une extinction n'étant pas j'imagine instantané, un des deux états va forcément "déborder".
Bref, si tout est instantané, il est impossible de répondre
( et la question est inconsistante).
Pour une étude physique réelle il faudrait en savoir plus sur le comportement de la guirlande...

la boulette

On peut faire une espèce d'analogie en 2d avec le théorème des segments emboités en 1d.
La partie de papier projetée par la boule sur le fond est dans la boulette donc se projette dans elle-même .... qui se projette dans elle-même etc.
On peut penser alors que l'intersection de toutes ces parties contient au moins un point projeté sur lui-même...
Je sais , ... pas très mathématique comme "preuve" mais bon...
on s'évade un peu...

Bonne soirée
Alain


"Ceux qui ne savent rien en savent toujours autant que ceux qui n'en savent pas plus qu'eux" -Pierre Dac
"Travailler sur un groupe haddock, ou être heureux comme un poisson dans l'eau..."

Hors ligne

#5 05-01-2025 22:19:41

Zebulor
Membre expert
Inscription : 21-10-2018
Messages : 2 184

Re : Clignotage

Re,

hypothèse

le clignotement serait si rapide à partir d'une seconde qu'il pourrait laisser une impression sur la rétine de sorte qu'on aurait l illusion visuelle que la guirlande ne clignote plus en restant allumée...

Dernière modification par Zebulor (05-01-2025 22:21:09)


En matière d'intégrales impropres les intégrales les plus sales sont les plus instructives.

Hors ligne

#6 06-01-2025 09:48:27

bridgslam
Membre
Lieu : Rospez
Inscription : 22-11-2011
Messages : 1 581

Re : Clignotage

Bonjour,

@Zebulor:  hélas on ne sait pas ce qu'elle fait à partir de t=1s...
Tu as extrapolé en faveur d'un allumage, mais elle pourrait tout aussi bien être éteinte.

Bonne journée
Alain


"Ceux qui ne savent rien en savent toujours autant que ceux qui n'en savent pas plus qu'eux" -Pierre Dac
"Travailler sur un groupe haddock, ou être heureux comme un poisson dans l'eau..."

Hors ligne

#7 06-01-2025 10:37:05

Zebulor
Membre expert
Inscription : 21-10-2018
Messages : 2 184

Re : Clignotage

Bonjour,
@bridgslam : tout à fait !

Bonne journée !


En matière d'intégrales impropres les intégrales les plus sales sont les plus instructives.

Hors ligne

#8 06-01-2025 10:58:55

Bernard-maths
Membre
Lieu : 34790 Grabels
Inscription : 18-12-2020
Messages : 1 517

Re : Clignotage

Bonjour à tous !

Dans mon lit hier soir, je cogitais sur la guirlande ...

La série de 1er terme 1 et de raison 1/2 a pour moyenne entre 62% et 65%, donc la perception lumineuse devrait l'emporter, et donner l'impression que la guirlande est allumée à l'instant t = 1s ... MAIS rien ne permet de le savoir ! D'accord ave vous ...

Par contre on devrait pouvoir le calculer pour tout t < 1s ...


La boulette : rien à priori ne permet de conclure ???

Vous parlez de segments ... je ne vois pas bien. Par contre on peut imaginer que la surface du papier est recouverte par une "ligne" zigzagante démarrant en un point donné du papier (au fond ?), et que froissement envoie ce début ailleurs qu'à la verticale du point de départ ???

Bref, je vois pas !

Cordialement, Bernard-maths

Dernière modification par Bernard-maths (06-01-2025 11:01:28)


Ma philosophie est immuable : l'immobilisme tue ...
Les Anciens ont trouvé le plus facile ... il nous reste le plus dur !

En ligne

#9 06-01-2025 14:57:50

bridgslam
Membre
Lieu : Rospez
Inscription : 22-11-2011
Messages : 1 581

Re : Clignotage

Bonjour Bernard,

On peut modéliser les projections successives ( boulette projetée sur le fond, puis cette partie du papier (belle et bien dans la boulette aussi ...)  qui se projette dans la projection précédente, etc )  par
une sorte de suite de polygones pleins emboîtés sur le fond de la boite.
A l'instar en dimension 1 d'une suite de segments emboîtés, où un point au moins est forcément "sous" tous les  segments, c'est la même idée avec des surfaces ici, plaquées successivement l'une dans l'autre (au sens large).
Je dis ça "avec les mains" mais ce n'est pas trop mathématique, donc il ne faut pas chercher trop loin (surtout pour un géomètre comme toi), l'idée est plus intuitive qu'autre chose... et vaguement topologique si tu préfères.

Alain


"Ceux qui ne savent rien en savent toujours autant que ceux qui n'en savent pas plus qu'eux" -Pierre Dac
"Travailler sur un groupe haddock, ou être heureux comme un poisson dans l'eau..."

Hors ligne

#10 06-01-2025 17:12:53

Zeus20
Membre
Inscription : 13-12-2024
Messages : 9

Re : Clignotage

bonjour la team
je pense  que Jai un raisonnement cohérant  qui est le suivant ;


Pour la guirlande clignotante, elle suit une série géométrique où chaque intervalle de temps est la moitié du précédent. Au temps t=1s, la somme des intervalles de temps pendant lesquels la guirlande est allumée est égale à 1. Donc, à ce moment-là, elle est éteinte.

Pour le papier chiffonné Selon le (théorème de point fixe de Brouwer) , lorsqu'on déforme continuellement une surface (comme le papier), il y aura toujours au moins un point qui reste à la même position verticale. Donc, oui, il est vrai qu'un point au moins du papier se retrouve à la verticale du point qu'il occupait lorsqu'il était à plat

Hors ligne

#11 06-01-2025 19:32:51

bridgslam
Membre
Lieu : Rospez
Inscription : 22-11-2011
Messages : 1 581

Re : Clignotage

Bonsoir,

Pour la guirlande, on a juste le comportement entre 0 (inclus) et 1 exclus. Rien ne permet de dire ce qu'elle fait à t=1s.

C'est comme définir ici une fonction f  étagée sur [0,1[ sans rien dire de f(1) : défini, pas défini? quelle valeur ?
La guirlande peut même tomber en panne à 1s, donc  ni allumée (clair) , et dire qu'elle est éteinte devient délicat... n'étant plus dans son état normal.

Brouwer j'en ai entendu parler, effectivement, plutôt version coiffure avec au moins un épi sur la tête, ici j'essaie juste de comprendre la chose avec des idées terre à terre, et  peu de mathématique même si elle est sans doute sous-jacente.


Bonne soirée
A.

Dernière modification par bridgslam (06-01-2025 19:46:34)


"Ceux qui ne savent rien en savent toujours autant que ceux qui n'en savent pas plus qu'eux" -Pierre Dac
"Travailler sur un groupe haddock, ou être heureux comme un poisson dans l'eau..."

Hors ligne

#12 06-01-2025 22:03:08

Zebulor
Membre expert
Inscription : 21-10-2018
Messages : 2 184

Re : Clignotage

Zeus20 a écrit :

Pour la guirlande clignotante, elle suit une série géométrique où chaque intervalle de temps est la moitié du précédent. Au temps t=1s, la somme des intervalles de temps pendant lesquels la guirlande est allumée est égale à 1

Le problème me semble-t-il, est que c'est la somme infinie de termes qui vaut 1. Pour n"importe quel $t$ compris entre 0 inclus et 1 exclus il est possible de savoir l etat de la lampe, mais pas pour t=1.

Dernière modification par Zebulor (06-01-2025 22:08:46)


En matière d'intégrales impropres les intégrales les plus sales sont les plus instructives.

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt quatorze plus
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums