Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 15-06-2025 20:32:30

Scytale
Membre
Inscription : 30-12-2024
Messages : 9

Pivot Gauss question

Bonjour,

J'ai question concernant le pivot de Gauss.

J'ai le systeme linéaire suivant :

\begin{aligned}
2x - y &= 0 \\
-x + y + z &= 0 \\
-x + 3y - 2z &= 0
\end{aligned}

soit :

\begin{pmatrix}
2 & -1 & 0 \\
-1 & 1 & 1 \\
-1 & 3 & -2
\end{pmatrix}

J'ai d'abord fait un pivot la ligne 1 avec la ligne 2 mais je suis pas sur si je peux echange la 3eme colonne avec la première ?
Où on retrouvera donc Z en colonne 1, y en colonne 2 et x en colonne 3, ce qui me donnera donc :

\begin{pmatrix}
1 & 1 & -1 \\
0 & -1 & 2 \\
-2 & 3 & -1
\end{pmatrix}

Merci d'avance pour votre éclaircissement.

Hors ligne

#2 16-06-2025 07:03:26

Roro
Membre expert
Inscription : 07-10-2007
Messages : 1 784

Re : Pivot Gauss question

Bonjour,

Je n'ai pas forcément suivi ce que tu as fait mais je crois que lorsqu'on fait la méthode du pivot de Gauss, il est plus prudent de ne travailler qu'avec les lignes et de ne pas mélanger les opérations sur les lignes et les colonnes...

Et lorsque tu dis que tu as fait un pivot avec la première ligne, alors il faut l'utiliser (cette première ligne) pour enlever les coefficients à gauche dans deux dernières lignes (et pas seulement dans la seconde). Bref, l'algorithme du pivot de Gauss est simple mais il ne faut pas trop essayer de le modifier sans raison.

Roro.

Dernière modification par Roro (16-06-2025 07:05:39)

Hors ligne

#3 16-06-2025 07:31:57

Rescassol
Membre
Lieu : 30610 Sauve
Inscription : 19-09-2023
Messages : 320

Re : Pivot Gauss question

Bonjour,

M'enfin, ici $x=y=z=0$ est solution évidente et c'est la seule puisque le déterminant est non nul (par exemple), donc le pivot de Gauss n'a pas grand intérêt.

Cordialement,
Rescassol

Hors ligne

#4 16-06-2025 13:18:47

Michel Coste
Membre Expert
Inscription : 05-10-2018
Messages : 1 425

Re : Pivot Gauss question

Bonjour,
Bien sûr que $x=y=z=0$ est solution évidente d'un système linéaire homogène ! Le pivot pour vérifier que le système est bien de Cramer se fait sans difficulté. On peut utiliser le $-1$ de la deuxième ligne comme premier pivot ($L_1 \leftarrow L_2;\ L_2\leftarrow L_1+2L_2;\  L_3\leftarrow L_3-L_2$):
$$\begin{pmatrix} -1&1&1\\ 0&1&2\\ 0&2&-3\end{pmatrix}$$ puis le 1 de la nouvelle deuxième ligne comme deuxième pivot ($L_3\leftarrow L_3-2L_2$) :
$$\begin{pmatrix} -1&1&1\\ 0&1&2\\ 0&0&-7\end{pmatrix}$$

Hors ligne

#5 16-06-2025 13:27:13

Scytale
Membre
Inscription : 30-12-2024
Messages : 9

Re : Pivot Gauss question

Roro a écrit :

Bonjour,

Je n'ai pas forcément suivi ce que tu as fait mais je crois que lorsqu'on fait la méthode du pivot de Gauss, il est plus prudent de ne travailler qu'avec les lignes et de ne pas mélanger les opérations sur les lignes et les colonnes...

Et lorsque tu dis que tu as fait un pivot avec la première ligne, alors il faut l'utiliser (cette première ligne) pour enlever les coefficients à gauche dans deux dernières lignes (et pas seulement dans la seconde). Bref, l'algorithme du pivot de Gauss est simple mais il ne faut pas trop essayer de le modifier sans raison.

Roro.


Tout d'abord, merci d'avoir pris le temps de me répondre.

Oui j'ai fait une erreur (systeme que j'ai imaginé pour illustré mes propos) mais j'ai bien conscience que le principal objectif de la méthode d'élimination de Gauss est de triangularisé la matrice afin de pouvoir effectuer une résolution par substitution à la fin.
Ma question étant de savoir si c'est mathématiquement correct de pouvoir échanger les colonnes ou pas. Tout en s'assurant que l'inconnue "liée" soit egalement prise en compte.
Car dans un des exercices de mon syllabus, j'ai trouvé la bonne réponse en faisant cela mais je voulais m'assurer que c'étais pas un coup de chance... Lorsque je regarde dans mon syllabus, je ne vois pas de précision à ce sujet...

Dernière modification par Scytale (16-06-2025 13:31:16)

Hors ligne

#6 16-06-2025 13:28:18

Scytale
Membre
Inscription : 30-12-2024
Messages : 9

Re : Pivot Gauss question

Rescassol a écrit :

Bonjour,

M'enfin, ici $x=y=z=0$ est solution évidente et c'est la seule puisque le déterminant est non nul (par exemple), donc le pivot de Gauss n'a pas grand intérêt.

Cordialement,
Rescassol


Oui effectivement mais ce n'était qu'un exemple pour illustrer ma question

Hors ligne

#7 16-06-2025 13:37:52

Michel Coste
Membre Expert
Inscription : 05-10-2018
Messages : 1 425

Re : Pivot Gauss question

Pour échelonner une matrice suivant les lignes, on n'opère pas sur les colonnes !
Par ailleurs, ne pas confondre "échelonner" et "triangulariser". Ce sont deux choses bien différentes.

Dernière modification par Michel Coste (16-06-2025 13:40:27)

Hors ligne

#8 16-06-2025 13:50:05

Scytale
Membre
Inscription : 30-12-2024
Messages : 9

Re : Pivot Gauss question

Michel Coste a écrit :

Pour échelonner une matrice suivant les lignes, on n'opère pas sur les colonnes !
Par ailleurs, ne pas confondre "échelonner" et "triangulariser". Ce sont deux choses bien différentes.


Bonjour,

Je vous remercie grandement pour votre réponse.
Ce qui signifie alors que je ne saisi pas le principe du changement de pivot total, voici ce qu'il est indiqué dans mon syllabus :

(Veuillez m'excuser pour ma non compréhension...)

temp-Imagez-VDAq-T.avif

Hors ligne

#9 16-06-2025 15:18:49

Michel Coste
Membre Expert
Inscription : 05-10-2018
Messages : 1 425

Re : Pivot Gauss question

Tout dépend de ce qu'on veut faire.
Si on veut échelonner une matrice suivant les lignes, on ne fait que des opérations sur les lignes. Ça peut servir par exemple à vérifier qu'une matrice est inversible et à calculer son inverse. Dans ce cas de figure, il serait catastrophique de mélanger opérations sur les lignes et sur les colonnes.
Si on veut résoudre un système linéaire en optimisant la précision (quand les coefficients du système sont des valeurs numériques approchées, par exemple), on a intérêt à procéder comme dans ton syllabus en cherchant pour pivot le coefficient de plus grande valeur absolue.

Hors ligne

#10 16-06-2025 15:38:40

Scytale
Membre
Inscription : 30-12-2024
Messages : 9

Re : Pivot Gauss question

Un grand merci pour votre explication et précision !

Merci d'avoir pris le temps d'y répondre.

Une excellente journée à vous

Hors ligne

#11 18-06-2025 10:57:13

triop
Membre
Inscription : 13-03-2024
Messages : 9

Re : Pivot Gauss question

Rescassol a écrit :

Bonjour,

M'enfin, ici $x=y=z=0$ est solution évidente et c'est la seule puisque le déterminant est non nul (par exemple), donc le pivot de Gauss n'a pas grand intérêt.

Cordialement,
Rescassol

Sauf que le pivot est la méthode la plus efficace de calcul du déterminant ;)

Hors ligne

#12 18-06-2025 11:13:03

Rescassol
Membre
Lieu : 30610 Sauve
Inscription : 19-09-2023
Messages : 320

Re : Pivot Gauss question

Bonjour,

j'ajoute deux fois la deuxième colonne à la première et j'ai le déterminant immédiatement, de tête, sans aller chercher un quelconque pivot: $det=1(-2-5)=-7$.

Cordialement,
Rescassol

Hors ligne

#13 18-06-2025 15:44:18

Michel Coste
Membre Expert
Inscription : 05-10-2018
Messages : 1 425

Re : Pivot Gauss question

j'ajoute deux fois la deuxième colonne à la première

Tu utilises donc un pivot.

Hors ligne

#14 18-06-2025 15:48:39

Rescassol
Membre
Lieu : 30610 Sauve
Inscription : 19-09-2023
Messages : 320

Re : Pivot Gauss question

Bonjour,

C'est jouer sur les mots.
Je peux aussi développer suivant la première ligne, de tête.
Ou encore:
$y=2x$ dans la première ligne d'où $z=-x$ dans la deuxième, d'où $7x=0$ dans la troisième.

Cordialement,
Rescassol

Dernière modification par Rescassol (18-06-2025 15:53:03)

Hors ligne

#15 18-06-2025 16:25:08

Michel Coste
Membre Expert
Inscription : 05-10-2018
Messages : 1 425

Re : Pivot Gauss question

C'est jouer sur les mots.

Non, juste une constatation factuelle

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quarantequatre plus soixante quatorze
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums