Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 02-08-2024 18:54:55

CO2
Invité

Vecteurs et milieu

Bonjour.

Je continue mes exercices pour la rentrée et actuellement je coince sur le suivant :

On donne un triangle $ABC$. Construire les points $E$ et $F$ tels que $\vec{AE}=\vec{AB}+\vec{AC}$ et $\vec{AF}=\vec{AB}-\vec{AC}$. Démontrer que $B$ est le milieu de $EF$.

J'ai commencé par faire la figure qui m'a donné ceci
NHcqRpoWWF0_vecteurs.png

J'ai ensuite essayé de décomposer $\vec{EF}$ avec la relation de Chasles, ce qui me donne

\begin{equation}
\begin{split}
\vec{EF} & = \vec{EA}+\vec{AF} \\
   & = \vec{AF}-\vec{AE} \\
   & = (\vec{AB}+\vec{AC})-(\vec{AB}-\vec{AC}) \\
   & = 2\vec{AC} \\
\end{split}
\end{equation}

Néanmoins, je ne vois pas en quoi cela me permet de conclure… j'imagine donc que je fais fausse route ? Mais où ?

#2 02-08-2024 18:57:31

CO2
Invité

Re : Vecteurs et milieu

Oops, c'est $-2\vec{AC}$, j'ai inversé les définitions de $\vec{AE}$ et $\vec{AF}$ en recopiant.

#3 02-08-2024 21:39:06

BigDeal
Invité

Re : Vecteurs et milieu

Bonsoir !

(Tu as mis deux fois le point $E$ sur ton schéma.)
Tu peux remarquer que $ ACBF $ est un parallélogramme. Or les côtés d'un parallélogramme sont égaux deux à deux donc $\vec{FB} = \vec{AC} $. De même, $ABEC$ est un parallélogramme donc $ \vec{BE} = \vec{AC} $. On a alors $ \vec{FB} = \vec{BE} $ donc B est le milieu du segment $EF$.

Conseil : il faut avoir une stratégie de résolution avant d'écrire. Ce que tu as écrit est juste, mais tu écris des choses sans savoir pourquoi tu le fais et en espérant que cela fera apparaître la solution par magie. J'avais le même problème que toi en classe préparatoire et ça m'a porté préjudice :/ . Donc, lorsque que tu écris quelque chose, tu dois toujours être capable de justifier pourquoi tu fais cela et en quoi cela t'aidera à résoudre ton problème ! (Je conseille le jeu d'échecs pour prendre cette habitude.) Bien évidemment c'est toujours bien de manipuler tes objets si ton brouillon pour comprendre comment ils se comportent. 

Bon courage pour tes révisions !

Respectueusement,
  BigDeal

#4 02-08-2024 21:57:31

BigDeal
Invité

Re : Vecteurs et milieu

Il faut aussi montrer que $B$ appartient au segment $EF$.

PS : je suis vraiment désolé j'avais mal lu ton message ton idée était bonne. Je suis mal placé pour donné des conseils...

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante trois moins quarantequatre
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums