Inverser une matrice à partir d'une égalité - Bibm@th.net
Exercice 1 - Inverser une matrice à partir d'une égalité [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
- Soit $\dis A=\left( \begin{array}{ccc} -1&1&1\\ 1&-1&1\\ 1&1&-1 \end{array}\right)$. Montrer que $A^2=2I_3-A$, en déduire que $A$ est inversible et calculer $A^{-1}$.
- Soit $ A=\begin{pmatrix} 1 & 0 & 2 \cr 0 & -1 & 1 \cr 1 & -2 & 0 \cr \end{pmatrix} .$ Calculer $ A^3-A .$ En déduire que $ A $ est inversible puis déterminer $ A^{-1} .$
- Soit $A=\begin{pmatrix} 0&1&-1\\ -1&2&-1\\ 1&-1&2 \end{pmatrix}$. Calculer $A^2-3A+2I_3$. En déduire que $A$ est inversible, et calculer $A^{-1}$.