Coïncidence de sous-espaces - Bibm@th.net
Enoncé
Dans les exemples suivants, démontrer que les sous-espaces $F$ et $G$ de $E$ sont égaux.
- $E=\mathbb R^3$, $u_1=(1,1,3)$, $u_2=(1,-1,-1)$, $v_1=(1,0,1)$, $v_2=(2,-1,0)$, $F=\textrm{vect}(u_1,u_2)$ et $G=\textrm{vect}(v_1,v_2)$.
- $E=\mathbb R^3$, $F=\textrm{vect}\big((2,3,-1),(1,-1,-2)\big)$ et $G=\textrm{vect}\big((3,7,0),(5,0,-7)\big)$.
- $E=\mathbb R^3$, $F=\{(x,y,z)\in\mathbb R^3;\ x+y+z=0\}$, $u_1=(1,1,-2)$, $u_2=(1,-4,3)$ et $G=\textrm{vect}(u_1,u_2)$.
- $E=\mathbb R^4$, $$F=\{(x,y,z,t)\in\mathbb R^4;\ x+y+z+t=0\textrm{ et }x-y+2z-2t=0\}$$ $$G=\{(x,y,z,t)\in\mathbb R^4;\ 5x+y+7z-t=0\textrm{ et }x-3y+3z-5t=0\}.$$