$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Formulaire de Mathématiques : Transformée en Z

Définition et domaines de convergence
Définition : Soit (un) une suite. On appelle transformée en Z de cette suite la fonction d'une variable complexe définie par :
En séparant la somme en deux, somme sur les entiers négatifs et somme sur les entiers positifs, on distingue deux séries entières, l'une en z et l'autre en 1/z. Le domaine de convergence de la transformée en z est alors une couronne.

  Souvent, on n'étudie la transformée en Z que pour des suites causales, c'est-à-dire des suites telles que un=0 pour n<0. La définition devient alors
et le domaine de convergence est l'extérieur d'un disque.
Définition et domaines de convergence
  Voici une table des transformées en Z usuelles. On ne considère que des suites causales.
Propriétés de la transformée en z
  La transformée en Z possède les propriétés formelles suivantes :

  Par ailleurs, elle vérifie le théorème suivant, dit de la valeur initiale et de la valeur finale :
Théorème : Soit (x(n)) une suite causale et F sa transformée en Z. Alors :
  • Lorsque la limite existe,