$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}}
\newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}}
\newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)}
\newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n}
\newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}}
\newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)}
\newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch}
\DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th}
\DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card}
\DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im}
\DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr}
\DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp}
\newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}}
\newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle}
\newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]}
\newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle}
$$
Bibm@th Formulaire de Mathématiques : Table de la loi de Kolmogorov-Smirnov
Utilisation
En fonction de la taille n de l'échantillon et d'une probabilité a, valeur de l'écart qui a la probabilité
a d'être dépassé en valeur absolue.
| 0.10 | 0.05 | 0.01 |
1 | 0,9500 | 0.9750 | 0.9950 |
2 | 0,7764 | 0.8419 | 0.9293 |
3 | 0,6360 | 0.7076 | 0.8290 |
4 | 0,5652 | 0.6239 | 0.7342 |
5 | 0,5095 | 0.5633 | 0.6685 |
6 | 0,4680 | 0.5193 | 0.6166 |
7 | 0,4361 | 0.4834 | 0.5758 |
8 | 0,4096 | 0.4543 | 0.5418 |
9 | 0,3875 | 0.4300 | 0.5133 |
10 | 0,3697 | 0.4092 | 0.4889 |
11 | 0,3524 | 0.3912 | 0.4677 |
12 | 0,3381 | 0.3754 | 0.4491 |
13 | 0,3255 | 0.3614 | 0.4325 |
14 | 0,3142 | 0.3489 | 0.4176 |
15 | 0,3040 | 0.3376 | 0.4042 |
16 | 0,2947 | 0.3273 | 0.3920 |
17 | 0,2863 | 0.3180 | 0.3809 |
18 | 0,2785 | 0.3094 | 0.3706 |
19 | 0,2714 | 0.3014 | 0.3612 |
20 | 0,2647 | 0.2941 | 0.3524 |
21 | 0,2586 | 0.2872 | 0.3443 |
22 | 0,2528 | 0.2809 | 0.3367 |
23 | 0,2475 | 0.2749 | 0.3295 |
24 | 0,2424 | 0.2693 | 0.3229 |
25 | 0,2377 | 0.2640 | 0.3166 |
30 | 0,2176 | 0.2417 | 0.2899 |
35 | 0,2019 | 0.2242 | 0.2690 |
40 | 0,1891 | 0.2101 | 0.2521 |
45 | 0,1786 | 0.1984 | 0.2380 |
50 | 0,1696 | 0.1884 | 0.2260 |
60 | 0,1551 | 0.1723 | 0.2067 |
70 | 0,1438 | 0.1598 | 0.1917 |
80 | 0,1347 | 0.1496 | 0.1795 |
90 | 0,1271 | 0.1412 | 0.1694 |
100 | 0,1207 | 0.1340 | 0.1608 |
n>100 | $1,223/\sqrt n$ | $1,358/\sqrt n$ | $1,629/\sqrt n$ |