Forum de mathématiques - Bibm@th.net
Vous n'êtes pas identifié(e).
- Contributions : Récentes | Sans réponse
- Accueil
- » Entraide (supérieur)
- » Résoudre limite indéterminée
- » Répondre
Répondre
Résumé de la discussion (messages les plus récents en premier)
- gabx
- 30-11-2024 15:46:33
c'est bon j'ai trouvé ! il faut avoir l'oeil quand même mdr. Merci beaucoup bonne journée
- Glozi
- 30-11-2024 01:21:57
Ok, je réécris ta première factorisation sous la forme
$$\frac{\sin(e x^2)}{(e^{-\pi x}-1)^2} = \frac{\sin(e x^2)}{x^2}\times \frac{x^2}{(e^{-\pi x}-1)^2}.$$
Est-ce que tu vois apparaître les taux de variations maintenant ? (l'un d'entre eux est élevé à une certaine puissance).
Bonne soirée
- gabx
- 30-11-2024 00:12:27
Je ne trouve pas tes taux de variation, je factoriserais comme ça moi : [tex]\frac{\sin(e x^2)}{(e^{-\pi x} - 1)^2}[/tex] ou [tex]\left( \frac{e^{\pi x}}{e^{\pi x} - 1} \right)^2 \sin(e x^2)
[/tex] et j'ai essayé taux de variation/changement de variable à partir de celles-ci mais je n'aboutis à rien...
- Glozi
- 29-11-2024 20:19:30
Bonsoir,
C'est dommage, tu as énoncé trois idées (factoriser/changement de variable/ taux de variations) dans ton premier post et il faut en fait utiliser les trois !
Si tu as vu la factorisation alors pour la suite voici une astuce :
Faire apparaître les taux de variations suivants :
$\frac{\sin(ex^2)}{x^2}$
et $\frac{e^{-\pi x}-1}{x}.$
(si tu ne vois toujours pas, je propose que tu nous donne la factorisation que tu dis avoir vu pour qu'on parte bien sur la même base).
Bonne soirée
- gabx
- 29-11-2024 19:56:29
oui mais ça ne lève pas l'indétermination
- Rescassol
- 29-11-2024 19:53:52
Bonsoir,
Le dénominateur se factorise.
Cordialement,
Rescassol
- gabx
- 29-11-2024 19:28:47
Bonsoir, mon prof de terminale nous a donné cette limite à calculer (sans développements limités ni d'hôpital) mais je ne vois vraiment pas comment m'en sortir, même en factorisant dans tous les sens, changeant de variable ou avec des taux de variation.
[tex]\left[
\lim_{x \to 0} \dfrac{e^{\pi x} \sin(e x^2)}{e^{\pi x} + e^{-\pi x} - 2}
\right]
[/tex]