Forum de mathématiques - Bibm@th.net
Vous n'êtes pas identifié(e).
- Contributions : Récentes | Sans réponse
Répondre
Résumé de la discussion (messages les plus récents en premier)
- bridgslam
- 25-08-2024 16:02:40
Bonjour,
Sauf erreur , pour moi, avec vos notations, c'est bien l'isomorphisme $\alpha$ qui va de $\mathbb Z/m\mathbb Z\times \mathbb Z/d\mathbb Z$ vers $\mathbb Z/a\mathbb Z\times \mathbb Z/b\mathbb Z$ et vice versa avec $\alpha^{-1}$.
On est bien d'accord?
C'est beaucoup plus simple, merci !
Alain
- Michel Coste
- 24-08-2024 11:24:04
Bonjour,
On peut expliciter un isomorphisme $\alpha$ entre $\mathbb Z/a\mathbb Z\times \mathbb Z/b\mathbb Z$ et $\mathbb Z/m\mathbb Z\times \mathbb Z/d\mathbb Z$. Notons $a'=a/d$ et $b'=b/d$. Il existe des entiers $u$ et $v$ tels que $ua'-vb'=1$.
$\alpha$ est induit par l'automorphisme de $\mathbb Z^2$ de matrice $\begin{pmatrix}1&ua'\\1&vb'\end{pmatrix}$ et $\alpha^{-1}$ par celui de matrice inverse $\begin{pmatrix} -vb'&ua'\\1&-1\end{pmatrix}$.
- bridgslam
- 24-08-2024 04:14:31
Bonjour,
De rien, avec plaisir.
Il vaut mieux parler de "réalisation" que de "représentation", dans mon propos précédent, ce mot étant déjà réservé pour les groupes finis il me semble.
A.
- Vincent62
- 22-08-2024 16:57:25
Bonjour,
Merci Alain, ça confirme ce que j'ai fait :)
- bridgslam
- 20-08-2024 13:39:10
Bonjour,
C'est presque plus dur à exprimer qu'à voir.
le produit cartésien $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ se décompose en produit cartésien de produits cartésiens de la forme
$\mathbb{Z}/p^{\alpha}\mathbb{Z} \times \mathbb{Z}/p^{\beta}\mathbb{Z}$, $\alpha$ et $\beta$ étant les valuations relativement à p premier resp. de a et de b,
on regroupe le produit cartésien selon min et max sur les valuations (pour tout p) , pour chaque facteur p on obtient donc d'une part le pgcd, d'autre part le ppcm des $p^{\alpha}, p^{\beta}$ , étant respectivement premiers entre eux lorsque p premier varie, en utilisant à nouveau (dans l'autre sens) le théorème chinois pour regrouper en 2 groupes cycliques avec pgcd (a,b) et ppcm (a,b) ( comme attendus).
M'étant comme d'hab sans doute très mal exprimé je donne un exemple schématique, $a = 2^2 5^3 7^2 $ et $b = 2^1 5^3 7^3$
on se retrouve avec le th. chinois avec ( $\mathbb{Z}/2^2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z} \times \mathbb{Z}/7^2\mathbb{Z}$ ) x ($\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z} \times \mathbb{Z}/7^3\mathbb{Z}$ )
Puis en réordonnant selon min puis selon max les facteurs du produit cartésien:
( $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z} \times \mathbb{Z}/7^2\mathbb{Z}$ ) x ($\mathbb{Z}/2^2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z} \times \mathbb{Z}/7^3\mathbb{Z}$ )
Il n'y a a plus qu'à appliquer le th. chinois pour retrouver pgcd d'un côté, ppcm de l'autre , et on a ce qu'on attendait.
Pour l'implication réciproque voyons: d'après transitivité de l'isomorphie $\mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} $ est donc isomorphes à
$\mathbb{Z}/d'\mathbb{Z} \times \mathbb{Z}/m'\mathbb{Z} $ en notant d,d' les pgcd de (a,b) et de (a',b') m,m' les ppcm de (a,b) et de (a',b').
On a donc deux représentations d'un même groupe abélien fini en produit de groupes cycliques , tels que d| m et d' | m'.
Or elle est unique ( voir le théorème correspondant). Donc d=d' et m=m'.
Ainsi pgcd (a,b) = pgcd (a',b') et ppcm(a,b) = ppcm( a',b').
L'équivalence est donc démontrée entre les deux propriétés.
Bonne fin de journée
Alain
- Vincent62
- 20-08-2024 10:02:15
Merci à vous deux, j'y réfléchis !
- Fred
- 19-08-2024 12:15:51
Re-
On peut effectivement prouver que $\mathbb Z/a\mathbb Z\times \mathbb Z/b\mathbb Z$ est isomorphe à $\mathbb Z/m\mathbb Z\times \mathbb Z/d\mathbb Z$, avec $m$ le ppcm et $d$ le pgcd de $a$ et de $b$. Pour cela, le mieux est de décomposer $a$ et $b$ en produit de facteurs premiers, d'appliquer le théorème chinois pour décomposer $\mathbb Z/a\mathbb Z$ et $\mathbb Z/b\mathbb Z$, et se souvenir comment on calcule le pgcd et le ppcm avec la décomposition en produits de facteurs premiers.
F.
- bridgslam
- 19-08-2024 08:55:42
Bonjour,
On doit normalement pouvoir montrer qu'ils sont isomorphes à $Z/\delta Z \times Z/\mu Z$, ce qui induit l'isomorphisme entre eux par transitivité.
A
- bridgslam
- 18-08-2024 18:45:29
Bonsoir,
Avec les isomorphismes de $\mathbb{Z}/ab\mathbb{Z} $ avec $ \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ et similairement
$\mathbb{Z}/a'b'\mathbb{Z} $ avec $ \mathbb{Z}/a'\mathbb{Z} \times \mathbb{Z}/b'\mathbb{Z}$
vu aussi que que ab = a'b' compte-tenu des hypothèses, il reste à voir ce que deviennent ces isomorphismes à un facteur $d^2$ et $d$ près, ce qui doit être faisable.
A.
- Vincent62
- 18-08-2024 14:04:50
Bonjour,
Je ne parviens à montrer que [tex]\frac{Z}{nZ}\times \frac{Z}{mZ}=\frac{Z}{n'Z}\times \frac{Z}{m'Z}[/tex] (le signe = siginfie ici "est isomorphe à ") équivaut à [tex]pgcd(n,m)=pgcd(n',m')[/tex] et [tex]ppcm(n,m)=ppcm(n',m')[/tex] (n, m, n' et m' sont des entiers naturels).
On suppose que pgcd(n,m)=pgcd(n',m') et ppcm(n,m)=ppcm(n',m').
On peut déjà noter que pgcd(n,m)ppcm(n,m)=pgcd(n',m')ppcm(n'm') et donc nm=n'm'.
Maintenant, j'aimerais pouvoir dire que [tex]\frac{Z}{nmZ}=\frac{Z}{nZ}\times \frac{Z}{mZ}[/tex] mais cela n'est vrai que si n et m sont premiers entre eux (théorème des restes chinois).
Je décompose également en produit de facteurs premiers, mais je n'arrive pas à exploiter l'écriture.
Je remarque aussi que a=n/pgcd(n,m) et b=m/pgcd(n,m) sont premiers entre eux...
Auriez-vous des indications ?
Merci d'avance et bon dimanche.