Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

Répondre

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
trente huit plus cinquante sept
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Retour

Résumé de la discussion (messages les plus récents en premier)

bridgslam
25-08-2024 16:02:40

Bonjour,

Sauf erreur , pour moi, avec vos notations, c'est bien l'isomorphisme $\alpha$ qui va de $\mathbb Z/m\mathbb Z\times \mathbb Z/d\mathbb Z$ vers $\mathbb Z/a\mathbb Z\times \mathbb Z/b\mathbb Z$  et vice versa avec $\alpha^{-1}$.

On est bien d'accord?

C'est beaucoup plus simple, merci !

Alain

Michel Coste
24-08-2024 11:24:04

Bonjour,
On peut expliciter un isomorphisme $\alpha$ entre $\mathbb Z/a\mathbb Z\times \mathbb Z/b\mathbb Z$ et $\mathbb Z/m\mathbb Z\times \mathbb Z/d\mathbb Z$. Notons $a'=a/d$ et $b'=b/d$. Il existe des entiers $u$ et $v$ tels que $ua'-vb'=1$.
$\alpha$ est induit par l'automorphisme de $\mathbb Z^2$ de matrice $\begin{pmatrix}1&ua'\\1&vb'\end{pmatrix}$ et $\alpha^{-1}$ par celui de matrice inverse $\begin{pmatrix} -vb'&ua'\\1&-1\end{pmatrix}$.

bridgslam
24-08-2024 04:14:31

Bonjour,

De rien, avec plaisir.
Il vaut mieux parler de "réalisation" que de "représentation", dans mon propos précédent, ce mot étant déjà réservé pour les groupes finis il me semble.

A.

Vincent62
22-08-2024 16:57:25

Bonjour,

Merci Alain, ça confirme ce que j'ai fait :)

bridgslam
20-08-2024 13:39:10

Bonjour,

C'est presque plus dur à exprimer qu'à voir.
le produit cartésien $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ se décompose en produit cartésien de produits cartésiens de la forme
$\mathbb{Z}/p^{\alpha}\mathbb{Z} \times \mathbb{Z}/p^{\beta}\mathbb{Z}$, $\alpha$ et $\beta$ étant les valuations relativement à p premier resp. de a et de b,
on regroupe le produit cartésien selon min et max sur les valuations (pour tout p) , pour chaque facteur p on obtient donc d'une part le pgcd, d'autre part le ppcm des $p^{\alpha}, p^{\beta}$ , étant respectivement premiers entre eux lorsque p premier varie, en utilisant à nouveau (dans l'autre sens) le théorème chinois pour regrouper en 2 groupes cycliques  avec pgcd (a,b) et ppcm (a,b) ( comme attendus).

M'étant comme d'hab sans doute très mal exprimé je donne un exemple schématique, $a = 2^2 5^3 7^2 $ et $b =  2^1 5^3 7^3$
on se retrouve avec le th. chinois  avec ( $\mathbb{Z}/2^2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z} \times \mathbb{Z}/7^2\mathbb{Z}$ ) x ($\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z} \times \mathbb{Z}/7^3\mathbb{Z}$ )
Puis en réordonnant selon min puis selon max les facteurs du produit cartésien:
( $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z} \times \mathbb{Z}/7^2\mathbb{Z}$ ) x ($\mathbb{Z}/2^2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z} \times \mathbb{Z}/7^3\mathbb{Z}$ )

Il n'y a a plus qu'à appliquer le th. chinois pour retrouver pgcd d'un côté, ppcm de l'autre , et on a ce qu'on attendait.

Pour l'implication réciproque voyons: d'après transitivité de l'isomorphie  $\mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} $ est donc isomorphes à
$\mathbb{Z}/d'\mathbb{Z} \times \mathbb{Z}/m'\mathbb{Z} $ en notant d,d' les pgcd de (a,b) et de (a',b') m,m' les ppcm de (a,b) et de (a',b').

On a donc deux représentations d'un même groupe abélien fini en produit de groupes cycliques , tels que d| m et d' | m'.
Or elle est unique ( voir le théorème correspondant). Donc d=d' et m=m'.
Ainsi pgcd (a,b) = pgcd (a',b') et ppcm(a,b) = ppcm( a',b').

L'équivalence est donc démontrée entre les deux propriétés.

Bonne fin de journée
Alain

Vincent62
20-08-2024 10:02:15

Merci à vous deux, j'y réfléchis !

Fred
19-08-2024 12:15:51

Re-

  On peut effectivement prouver que $\mathbb Z/a\mathbb Z\times \mathbb Z/b\mathbb Z$ est isomorphe à $\mathbb Z/m\mathbb Z\times \mathbb Z/d\mathbb Z$, avec $m$ le ppcm et $d$ le pgcd de $a$ et de $b$. Pour cela, le mieux est de décomposer $a$ et $b$ en produit de facteurs premiers, d'appliquer le théorème chinois pour décomposer $\mathbb Z/a\mathbb Z$ et $\mathbb Z/b\mathbb Z$, et se souvenir comment on calcule le pgcd et le ppcm avec la décomposition en produits de facteurs premiers.

F.

bridgslam
19-08-2024 08:55:42

Bonjour,

On doit normalement pouvoir montrer qu'ils sont isomorphes à $Z/\delta Z \times Z/\mu Z$, ce qui induit l'isomorphisme entre eux par transitivité.

A

bridgslam
18-08-2024 18:45:29

Bonsoir,

Avec les isomorphismes de $\mathbb{Z}/ab\mathbb{Z} $ avec $ \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ et similairement

$\mathbb{Z}/a'b'\mathbb{Z} $ avec $ \mathbb{Z}/a'\mathbb{Z} \times \mathbb{Z}/b'\mathbb{Z}$
vu aussi que  que ab = a'b' compte-tenu des hypothèses, il reste à voir ce que deviennent ces isomorphismes à un facteur $d^2$ et $d$ près, ce qui doit être faisable.

A.

Vincent62
18-08-2024 14:04:50

Bonjour,

Je ne parviens à montrer que [tex]\frac{Z}{nZ}\times \frac{Z}{mZ}=\frac{Z}{n'Z}\times \frac{Z}{m'Z}[/tex] (le signe = siginfie ici "est isomorphe à ") équivaut à [tex]pgcd(n,m)=pgcd(n',m')[/tex] et [tex]ppcm(n,m)=ppcm(n',m')[/tex] (n, m, n' et m' sont des entiers naturels).

On suppose que pgcd(n,m)=pgcd(n',m') et ppcm(n,m)=ppcm(n',m').
On peut déjà noter que pgcd(n,m)ppcm(n,m)=pgcd(n',m')ppcm(n'm') et donc nm=n'm'.
Maintenant, j'aimerais pouvoir dire que [tex]\frac{Z}{nmZ}=\frac{Z}{nZ}\times \frac{Z}{mZ}[/tex] mais cela n'est vrai que si n et m sont premiers entre eux (théorème des restes chinois).

Je décompose également en produit de facteurs premiers, mais je n'arrive pas à exploiter l'écriture.
Je remarque aussi que a=n/pgcd(n,m) et b=m/pgcd(n,m) sont premiers entre eux...

Auriez-vous des indications ?

Merci d'avance et bon dimanche.

Pied de page des forums