$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Norme et trace d'une extension

Soit $K\subset L$ une extension de corps de degré fini $n.$ Pour $x\in L$, l'application $u_x : L\to L, y \mapsto xy$ est un endomorphisme du $K$-espace vectoriel $L.$ On pose $N_{L/K}(x) = \det(u_x),$ $\textrm{Tr}_{L/K}(x) = \textrm{Tr}(u_x).$ On dit que $N_{L/K}(x)$ (resp. $\textrm{Tr}_{L/K}(x)$) est la norme (resp. la trace) de $x$ relativement à $K.$ Si $\lambda \in K$ et $x, y \in L,$ on a immédiatement \begin{eqnarray*} \textrm{Tr}_{L/K}(x),N_{L/K}(x)&\in&K\\ \textrm{Tr}_{L/K}(\lambda\cdot x+y) &=& \lambda\cdot \textrm{Tr}_{L/K}(x) + \textrm{Tr}_{L/K}(y)\\ \textrm{Tr}_{L/K}(\lambda) &=& n \lambda\\ N_{L/K}(\lambda\cdot x\cdot y) &=& \lambda^n \cdot N_{L/K}(x) \cdot N_{L/K}(y)\\ N_{L/K}(\lambda) &=& \lambda^n\\ N_{L/K}(x) &=& 0 \iff x = 0\\ N_{L/K}(x^{-1}) &=& [N_{L/K}(x)]^{-1}\iff \ x\neq 0. \end{eqnarray*}

Recherche alphabétique
Recherche thématique