$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Pas une bonne norme! - Bibm@th.net

Enoncé
Soit $E$ l'espace vectoriel des fonctions continues de $[-1,1]$ à valeurs dans $\mtr$. On définit une norme sur $E$ en posant $$\|f\|_1=\int_{-1}^1 |f(t)| \,dt.$$ On va montrer que $E$ muni de cette norme n'est pas complet. Pour cela, on définit une suite $(f_n)_{n\in\mtn^*}$ par \[f_n(t)=\begin{cases} -1 &\text{si } -1\le t \le -\frac1n\\ nt &\text{si } -\frac1n\le t \le \frac1n\\ 1 &\text{si } \frac1n \le t\le 1. \end{cases}\]
  1. Vérifier que $f_n\in E$ pour tout $n\ge 1$.
  2. Montrer que $$\|f_n-f_p\|_1\le \sup(\frac2n,\frac2p)$$ et en déduire que $(f_n)$ est de Cauchy.
  3. Supposons qu'il existe une fonction $f\in E$ telle que $(f_n)$ converge vers $f$ dans $(E,\|\cdot\|_1)$. Montrer qu'alors on a $$\lim_{n\rightarrow+\infty}\int_{-1}^{-\alpha} |f_n(t)-f(t)|\, dt=0 \qquad \text{et} \qquad \lim_{n\rightarrow+\infty}\int_{\alpha}^1 |f_n(t)-f(t)|\, dt=0$$ pour tout $0<\alpha<1$.
  4. Montrer qu'on a $$\lim_{n\rightarrow+\infty}\int_{-1}^{-\alpha} |f_n(t)+1|\, dt=0 \qquad \text{et} \qquad \lim_{n\rightarrow+\infty}\int_{\alpha}^1 |f_n(t)-1|\, dt=0$$ pour tout $0<\alpha<1$. En déduire que \begin{align*} &f(t)=-1\qquad &\forall t\in[-1,0[\\ &f(t)=1\qquad &\forall t\in ]0,1]. \end{align*} Conclure.
Indication
Corrigé