$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Deux fois pile - Bibm@th.net

Enoncé
On joue à pile ou face avec une pièce non équilibrée. A chaque lancer, la probabilité d'obtenir pile est 2/3, et donc celle d'obtenir face est 1/3. Les lancers sont supposés indépendants, et on note $X$ la variable aléatoire réelle égale au nombre de lancers nécessaires pour obtenir, pour la première fois, deux piles consécutifs. Pour $n\geq 1$, on note $p_n$ la probabilité $P(X=n)$.
  1. Expliciter les événements $(X=2)$, $(X=3)$, $(X=4)$, et déterminer la valeur de $p_2$, $p_3$, $p_4$.
  2. Montrer que l'on a $p_n=\frac{2}{9}p_{n-2}+\frac{1}{3}p_{n-1}$, $n\geq 4$.
  3. En déduire l'expression de $p_n$ pour tout $n$.
  4. Rappeler, pour $q\in]-1,1[$, l'expression de $\sum_{n=0}^{+\infty}nq^n$, et calculer alors $E(X)$. Interpréter.
Indication
Corrigé