$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Résumé de cours : Intégrales et primitives

Relations entre intégrales et primitives
  On suppose $f$ continue sur un intervalle $I$, et $a$ et $b$ deux éléments de $I$.
  • Théorème fondamental du calcul intégral : L'application $F:x\mapsto \int_a^x f(t)dt$ est l'unique primitive de $f$ qui s'annule en $a$.
  • Toute fonction continue sur un intervalle y admet des primitives.
  • Pour toute primitive $F$ de $f$ sur $I$, on a $\int_a^b f(t)dt=F(b)-F(a)$.
  • Si $f$ est de classe $C^1$, alors pour tout $x\in I$, $f(x)=f(a)+\int_a^x f'(t)dt.$
  • Si $u,v:J\to I$ sont dérivables sur $J$, alors l'application $$F(x)=\int_{u(x)}^{v(x)}f(t)dt$$ est dérivable sur $J$ et l'on a $$F'(x)=v'(x)f(v(x))-u'(x)f(u(x)).$$
Intégration par parties et changement de variables
  • Théorème : Soient $u,v:I\to\mathbb C$ deux fonctions de classe $C^1$. Alors pour tous $a,b$ dans $I$, on a $$\int_a^b u'(t)v(t)dt=u(b)v(b)-u(a)v(a)-\int_a^b u(t)v'(t)dt.$$
  • Théorème : Soit $\varphi$ une fonction de classe $C^1$ sur $I$. Alors si $f$ est continue sur $\varphi(I)$, pour tout $a,b\in I$, on a $$\int_{\varphi(a)}^{\varphi(b)} f(x)dx=\int_a^b f(\varphi(t))\varphi'(t)dt.$$
Formules de Taylor
  • Théorème : Soit $f:[a,b]\to\mathbb R$ de classe $\mathcal C^{n+1}$. Alors $$f(b)=f(a)+\frac{(b-a)}{1!}f'(a)+\cdots+\frac{(b-a)^n}{n!}f^{(n)}(t)+\int_a^b \frac{(b-t)^n}{n!}f^{(n+1)}(t)dt.$$
  • Inégalité de Taylor-Lagrange : Soit $f:[a,b]\to\mathbb R$ une fonction de classe $\mathcal C^{n+1}$. Alors $$\left| f(b)-\sum_{k=0}^{n}\frac{(b-a)^k}{k!}f^{(k)}(a)\right|\leq M_{n+1}\frac{|b-a|^{n+1}}{(n+1)!}$$ avec $M_{n+1}=\sup_{[a,b]}|f^{n+1}|$.