$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Préparer sa kholle : intégration sur un segment

L'exercice qu'il faut savoir faire
Enoncé
  1. Soit $(u_n)$ la suite définie par $$u_n=1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}.$$ Démontrer que $(u_n)$ converge vers $\exp(1)$.
  2. On considère la suite $(u_n)$ définie par $$u_n=1-\frac12+\frac13+\dots+\frac{(-1)^{n-1}}{n}.$$ Montrer que cette suite converge vers $\ln(2)$.
Indication
Corrigé
L'exercice standard
Exercice 2 - Logarithme intégral au carré [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Soient $I,J$ des intervalles de $\mathbb R$, soit $h:I\to\mathbb R$ continue, $u,v:J\to I$ de classe $C^1$ et $$F(x)=\int_{u(x)}^{v(x)}h(t)dt.$$ Justifier que $F$ est $C^1$ et calculer sa dérivée.
  2. On considère la fonction $F$ définie sur $I=]1,+\infty[$ par $$F(x)=\int_x^{x^2}\frac{dt}{(\ln t)^2}.$$ Étudier le sens de variation de $F$ sur $I$.
  3. En utilisant la décroissance sur $I$ de la fonction $t\mapsto \frac1{(\ln t)^2}$, déterminer $\lim_{x\to+\infty}F(x)$.
  4. En utilisant l'inégalité $0<\ln t\leq t-1$ pour $t\in I$, déterminer $\lim_{x\to 1^+}F(x)$.
Indication
Corrigé
L'exercice pour les héros
Enoncé
Soit $f$ une fonction de classe $C^1$ réalisant une bijection de $[0,+\infty[$ sur $[0,+\infty[$.
  1. Justifier que $f$ est strictement croissante.
  2. Montrer que, pour tout $x\in\mathbb R^+$, on a $$xf(x)=\int_0^x f(t)dt+\int_{0}^{f(x)}f^{-1}(t)dt.$$
  3. En déduire que, pour tous $x,y\in[0,+\infty[^2$, on a $$xy\leq \int_0^x f(t)dt+\int_0^yf^{-1}(t)dt.$$ Dans quel cas a-t-on égalité?
Indication
Corrigé