$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Préparer sa kholle : intégration sur un segment

L'exercice qu'il faut savoir faire
Enoncé
Soit $f:[0,1]\to\mathbb R$ une fonction continue. Montrer que si $\int_0^1 f(t)dt=\frac 12$, alors $f$ admet au moins un point fixe dans $[0,1]$.
Indication
Corrigé
L'exercice standard
Enoncé
On note, pour $n\geq 1$, $$I_n=\int_0^1 \frac 1{1+x^n}dx.$$ Soit également $\alpha\in [0,1[$.
  1. Démontrer que, pour tout $n\geq 1$, $$\frac{\alpha}{1+\alpha^n}\leq I_n\leq 1$$ (on pourra encadrer $\int_0^\alpha$ puis $\int_\alpha^1$).
  2. Démontrer que $(I_n)$ est croissante.
  3. Déduire des questions précédentes que $(I_n)$ converge vers $1$.
  4. En s'inspirant du modèle précédent, étudier $$J_n=\int_0^{\pi/2}e^{-n\sin t }dt.$$
Indication
Corrigé
L'exercice pour les héros
Enoncé
Soit $f:[a,b]\to\mathbb R$, $a<b$, une fonction continue non identiquement nulle. On suppose qu'il existe un entier $n$ tel que, pour tout $k\leq n$, on a $\int_a^b t^k f(t)dt=0$. On souhaite prouver que, dans l'intervalle $[a,b]$, il existe au moins $n+1$ points où $f$ s'annule en changeant de signe.
  1. Traiter le cas $n=0$.
  2. Traiter le cas $n=1$.
  3. Traiter le cas général.
Indication
Corrigé