$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Méthodes : intégrales impropres

Étude de la convergence d'une intégrale impropre
  Pour étudier une intégrale impropre $\int_I f$,
  • Étape 1 : on étudie la continuité (par morceaux) de $f$ sur $I$. Il faut vérifier notamment qu'il n'y a pas de problèmes à l'intérieur de $]a,b[$. D'autre part, il est possible que $f$ se prolonge par continuité en $a$ (ou en $b$). Dans ce cas, on n'a pas vraiment affaire à une intégrale impropre en $a$, mais à l'intégrale d'une fonction continue. Si par exemple on vous demande de justifier l'existence de $\int_0^1 \frac{\ln(1+t)}{t}dt$, vous devez dire que $f:t\mapsto \frac{\ln(1+t)}t$ est continue sur $]0,1]$ et se prolonge par continuité en $0$ en posant $f(0)=1$. Ainsi, $\int_0^1\frac{\ln(1+t)}tdt$ existe comme intégrale d'une fonction continue sur un segment.
  • Étape 2 : étude de la convergence. Il y a encore plusieurs méthodes possibles :
    • on connait une primitive de la fonction $f$ : dans ce cas, on conclut en utilisant la définition. C'est assez rare que ce soit possible, mais cela fonctionne pour prouver la convergence de $\int_0^1 \ln(t)dt$ ou de $\int_0^{+\infty}e^{-t}dt$. Par exemple, pour prouver la convergence de $\int_0^1 \ln(t)dt$, on peut dire que $\ln $ est continue sur $]0,1]$ et qu'une primitive est $t\mapsto t\ln t-t$. Ainsi, pour tout $\delta\in ]0,1]$, on a $$\int_\delta^1 \ln(t)dt=\left[t\ln t-t\right]_\delta^1=-\delta\ln\delta+\delta-1.$$ De plus, par comparaison de la fonction logarithme et des fonctions puissance en $0$, on a $$\lim_{\delta\to 0}\delta\ln\delta=0.$$ Ainsi, $\int_\delta^1\ln(t)dt$ admet une limite lorsque $\delta\to 0$, et donc $\int_0^1 \ln(t)dt$ converge. De plus, on a prouvé que $\int_0^1 \ln(t)dt=-1$.
    • par majoration, en se ramenant à la convergence d'une intégrale connue (souvent, une intégrale de Riemann), et en utilisant les théorèmes de croissance comparée. Par exemple, on prouve que pour tout $n\in\mathbb N$, $\int_0^{+\infty}t^n e^{-t}dt$ converge de la façon suivante : la fonction $t\mapsto t^n e^{-t}$ est continue sur $[0,+\infty[$. De plus, par croissance comparée de l'exponentielle et des puissances, $\lim_{t\to+\infty}t^{n+2}e^{-t}=0$. Autrement dit, $t^ne^{-t}=_{+\infty}o\left(\frac1{t^2}\right)$. Puisque $\frac 1{t^2}\geq 0$ et que $\int_1^{+\infty}\frac{dt}{t^2}$ converge, on en déduit que $\int_0^{+\infty} t^ne^{-t}dt$ converge.
    • par minoration, en utilisant le même type de raisonnement. Par exemple, on prouve la divergence de $\int_2^{+\infty}\frac{dt}{\ln t}$ de la façon suivante : la fonction $t\mapsto 1/\ln (t)$ est continue sur $[2,+\infty[$. De plus, par comparaison de la fonction racine carrée et du logarithme, on sait que $\lim_{t\to+\infty}\frac{\sqrt t}{\ln t}=+\infty$. Ainsi, pour $t$ assez grand, on a $\frac1{\ln t}\geq\frac1{\sqrt t}>0$. Puisque $\int_2^{+\infty}\frac{dt}{\sqrt t}$ diverge, on en déduit que $\int_2^{+\infty}\frac{dt}{\ln t}$ diverge.
    • par équivalent : si on démontre que $f(x)\sim_{+\infty}g(x)$ et si $f$ et/ou $g$ sont de signe constant au voisinage de l'infini, alors $\int_a^{+\infty}f(x)dx$ et $\int_a^{+\infty}g(x)dx$ sont de même nature. Pour trouver un équivalent simple, on utilise les techniques usuelles, notamment les développements limités.
    • par intégration par parties. Pour l'étude des certaines intégrales, du type $\int_1^{+\infty}\frac{\sin }{t}dt$, qui ne sont pas absolument convergentes, une intégration par parties permet de se ramener à une intégrale absolument convergente.
    Trouver un équivalent du reste ou de la somme partielle d'une intégrale impropre
    Pour déterminer un équivalent du reste ou de la somme partielle d'une intégrale impropre, on peut utiliser les théorèmes d'intégration des relations de comparaison :
    • parfois, on remplace simplement une fonction $f$ dont on ne sait pas calculer l'intégrale par une fonction $g$ qui lui est équivalente et dont on sait calculer l'intégrale (voir cet exercice).
    • parfois, on réalise une intégration par parties pour arriver à une écriture du type $$\int_a^x f(t)dt=F(x)+\int_a^x g(t)dt.$$ On peut alors conclure par exemple si $g(t)=_b o\big(f(t)\big)$ (voir cet exercice).