$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Méthodes : Fonctions définies par une intégrales

Trouver un équivalent du reste ou de la somme partielle d'une intégrale impropre
Pour déterminer un équivalent du reste ou de la somme partielle d'une intégrale impropre, on peut utiliser les théorèmes d'intégration des relations de comparaison :
  • parfois, on remplace simplement une fonction $f$ dont on ne sait pas calculer l'intégrale par une fonction $g$ qui lui est équivalente et dont on sait calculer l'intégrale (voir cet exercice).
  • parfois, on réalise une intégration par parties pour arriver à une écriture du type $$\int_a^x f(t)dt=F(x)+\int_a^x g(t)dt.$$ On peut alors conclure par exemple si $g(t)=_b o\big(f(t)\big)$ (voir cet exercice).
Permuter une série et une intégrale
  Pour permuter une série et une intégrale, $\sum_{n\geq 1}\int_I u_n(t)dt$, on peut
  • appliquer le théorème d'intégration terme à terme (voir cet exercice).
  • dans certains cas, le théorème d'intégration terme à terme ne fonctionne pas, et il faut revenir à une application directe du théorème de convergence dominée avec la suite $S_N(t)=\sum_{n=1}^N u_n(t)$ (voir cet exercice).
Démontrer la continuité d'une intégrale à paramètres
  • lorsque l'intervalle d'intégration $I$ est un segment, l'hypothèse de domination est souvent plus facile à obtenir par un argument de compacité. En effet, supposons que $u$ soit continue comme fonction des deux variables sur $[a,b]\times I$. Alors, ce dernier ensemble étant compact, il existe $M>0$ tel que, pour tout $(x,t)\in [a,b]\times I$, $|u(x,t)|\leq M$. Et les constantes sont intégrables sur les segments! (voir cet exercice).
  • lorsque qu'on veut démontrer la continuité sur $\mathbb R$ d'une fonction du type $F(x)=\int_I f(x,t)dt$, il suffit de la démontrer sur tout segment $[a,b]\subset \mathbb R$ et donc d'appliquer le théorème de continuité d'une intégrale à paramètres avec $x\in [a,b]$ (avec $a<b$ quelconques). Ceci simplifie parfois l'obtention de la fonction majorante. Le même raisonnement s'applique pour la dérivabilité des intégrales à paramètres (voir cet exercice).