$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Préparer sa kholle : espaces vectoriels normés

L'exercice qu'il faut savoir faire
Enoncé
Sur $E=\mathbb R[X]$, on définit $N_1$ et $N_2$ par $$N_1( P)=\sum_{k=0}^{+\infty}|P^{(k)}(0)|\textrm{ et }N_2( P)=\sup_{t\in [-1,1]}|P(t)|.$$
  1. Démontrer que $N_1$ et $N_2$ sont deux normes sur $E$.
  2. Étudier pour chacune des deux normes la convergence de la suite $(P_n)$ définie par $P_n=\frac 1nX^n$.
  3. Les deux normes sont-elles équivalentes?
Corrigé
L'exercice standard
Exercice 2 - Une norme induite par la trace [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour $A,B\in\mathcal M_n(\mathbb R)$, on définit $$\langle A,B\rangle=\textrm{tr}(A^T B).$$
  1. Démontrer que cette formule définit un produit scalaire sur $\mathcal M_n(\mathbb R)$. On notera $N$ la norme associée.
  2. Démontrer que, pour tous $A,B\in\mathcal M_n(\mathbb R)$, on a $N(AB)\leq N(A)N(B)$.
Indication
Corrigé
L'exercice pour les héros
Exercice 3 - Suite bornée et valeurs d'adhérence [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(u_n)$ une suite de réels bornée. Démontrer que $(u_n)$ converge si et seulement si elle admet une unique valeur d'adhérence.
Indication
Corrigé