$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Capes : exercices sur les fonctions dérivables

Pour réviser
Exercice 1 - Dérivable ou pas dérivable [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Les fonctions suivantes sont-elles dérivables en 0? $$f(x)=\frac{x}{1+|x|},\ \ \ g(x)= \left\{\begin{array}{ll} x\sin(x)\sin(1/x)&\textrm{ si }x\neq 0\\ 0&\textrm{ si }x=0. \end{array}\right.,\quad\quad h(x)=|x|\sin x.$$
Indication
Corrigé
Exercice 2 - Un problème de tangente [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Démontrer que les courbes d'équation $y=x^2$ et $y=1/x$ admettent une unique tangente commune.
Indication
Corrigé
Enoncé
Majorer l'erreur commise dans les approximations suivantes : $$\mathbf a.\sqrt{10001}\simeq 100;\ \mathbf b. \frac{1}{0,999^2}\simeq 1;\ \mathbf c.\cos 1\simeq\frac12.$$
Indication
Corrigé
Exercice 4 - Suite presque harmonique [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Démontrer que pour tout $x>0$, on a $$\frac1{x+1}<\ln(x+1)-\ln x<\frac 1x.$$
  2. On pose $$v_n=\frac 1{n+1}+\dots+\frac 1{2n}.$$ Démontrer que $$\ln(2n+1)-\ln(n+1)<v_n<\ln(2n)-\ln n.$$ En déduire que $(v_n)$ converge et déterminer sa limite.
Indication
Corrigé
Enoncé
Calculer la dérivée $n$-ième des fonctions suivantes : \begin{array}{lll} \mathbf 1. x\mapsto x\exp(x)&\quad\quad&\mathbf 2. x\mapsto x^2\sin x\\ \mathbf 3.x\mapsto x^{n-1}\ln(1+x). \end{array}
Indication
Corrigé
Pour progresser
Exercice 6 - Valeur approchée de $\ln 2$ [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $f,g:\mathbb R_+\to\mathbb R$ définies par $$g(x)=(x-2)e^{x}+(x+2),\ f(x)=\frac{x}{e^x-1}\textrm{ si }x\neq 0\textrm{ et }f(0)=1.$$
  1. Démontrer que $g\geq 0$ sur $\mathbb R_+$.
  2. Démontrer que $f$ est de classe $C^1$ sur $\mathbb R_+$. Que vaut $f'(0)$?
  3. Vérifier que $f''(x)=\frac{e^x g(x)}{(e^x-1)^3}$ pour tout $x>0$. En déduire que $|f'(x)|\leq 1/2$ sur $\mathbb R_+$.
  4. On définit une suite $(u_n)$ par $u_0=0$ et $u_{n+1}=f(u_n)$ pour tout entier naturel $n$. Prouver que, pour tout $n\in\mathbb N$, on a $$|u_{n}-\ln 2|\leq \left(\frac12\right)^n \ln 2.$$
Indication
Corrigé
Enoncé
On appelle polynômes de Legendre les polynômes $P_n(X)=\left((X^2-1)^n\right)^{(n)}$.
  1. Calculer le degré de $P_n$ et son coefficient dominant.
  2. Pour $0\leq p\leq n$, on pose $Q_p(X)=\left((X^2-1)^n\right)^{(p)}$. Quel est le degré de $Q_p$? Démontrer que $Q_p$ admet deux zéros d'ordre $n-p$, et $p$ zéros d'ordre 1.
  3. En déduire que $P_n$ s'annule exactement en $n$ points deux à deux distincts de $]-1,1[$.
Indication
Corrigé
Enoncé
On considère $f:\mathbb R\to\mathbb R$ définie par $$f(x)=\left\{\begin{array}{ll} 0&\textrm{ si }x\leq 0\\ e^{-\frac{1}{x}}&\textrm{ si }x>0. \end{array} \right.$$
  1. Montrer que $f$ est $C^\infty$ sur $]0,+\infty[$ et que, pour tout $x>0$, on a $f^{(n)}(x)=e^{-\frac1x}P_n(1/x)$ où $P_n\in\mathbb R[X]$.
  2. Montrer que $f$ est $C^\infty$ sur $\mathbb R$.
Indication
Corrigé
Exercice 9 - Théorème du point fixe [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f:[a;b]\to\mathbb [a,b]$ une application dérivable. On suppose qu'il existe $k\in ]0,1[$ tel que, pour tout $x\in [a,b]$, on a $|f'(x)|\leq k$. On dit que $\gamma\in [a,b]$ est un point fixe de $f$ si $f(\gamma)=\gamma$.
  1. Démontrer que $f$ admet un point fixe.
  2. Démontrer que ce point fixe est unique. On le note $\gamma$.
  3. Soit $(u_n)$ une suite récurrente définie par $u_0\in [a,b]$ et $u_{n+1}=f(u_n)$. Démontrer que $(u_n)$ converge vers $\gamma$.
Indication
Corrigé
Exercice 10 - Une étude de fonction, fonction réciproque [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f$ la fonction définie sur $\mathbb R$ par $f(x)=\cos(\arctan(2x+1))$.
  1. Étudier le sens de variation de $f$, ses limites en $\pm\infty$.
  2. Résoudre l'équation $f(x)=\frac1{\sqrt 2}$.
  3. Montrer que la restriction de $f$ à $[-1/2,+\infty[$ admet une fonction réciproque $g$ dont on précisera l'ensemble de définition.
  4. Calculer $g'(\sqrt 2/2)$.
Indication
Corrigé