$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Exercices corrigés - Bases de la logique - propositions - quantificateurs

Opérateurs logiques et tables de vérité
Exercice 1 - Autour de l'implication [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Trouver des propositions $P$ et $Q$ telles que
  1. $P\implies Q$ est vrai et $Q\implies P$ est vrai.
  2. $P\implies Q$ est faux et $Q\implies P$ est vrai.
  3. $P\implies Q$ est faux et $Q\implies P$ est faux.
Corrigé
Enoncé
Soit $A$, $B$ et $C$ trois propositions. Démontrer que les propositions $A\textrm{ ET }(B\textrm{ OU }C)$ et $(A\textrm{ et }B)\textrm{ OU }(A\textrm{ ET }C)$ sont équivalentes.
Indication
Corrigé
Exercice 3 - Opérateur logique universel [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On dit d'un opérateur logique qu'il est universel s'il permet de reconstituer tous les autres opérateurs logiques. En pratique, il suffit de vérifier que l'on peut reconstituer les trois opérateurs logiques $\textrm{NON}$, $\textrm{OU}$ et $\textrm{ET}$ pour montrer qu'un opérateur est universel. Démontrer que les deux opérateurs suivants sont universels :
  1. l'opérateur $\textrm{NAND}$, défini par $A\textrm{ NAND }B=\textrm{NON}(A\textrm{ ET }B)$;
  2. l'opérateur $\textrm{NOR}$, défini par $A\textrm{ NOR }B=\textrm{NON}(A\textrm{ OU }B)$.
Indication
Corrigé
Exercice 4 - Négation de l'implication [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $P$ et $Q$ deux propositions. Montrer que les propositions $\textrm{NON}(P\implies Q)$ et $P\textrm{ ET NON }Q$ sont équivalentes.
Indication
Corrigé
Exercice 5 - Forme normale conjonctive et disjonctive [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Écrire sous forme normale conjonctive et sous forme normale disjonctive les propositions ci-dessous :
  1. $(\lnot p \wedge q) \implies r$;
  2. $\lnot(p \vee \lnot q) \wedge (s \implies t)$;
  3. $\lnot(p \wedge q) \wedge (p \vee q)$;
Indication
Corrigé
Conditions nécessaires, conditions suffisantes
Exercice 6 - Nécessaire ou suffisante? [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On rappelle qu'un entier $p$ divise $n$, et on note $p|n$, s'il existe un entier relatif $k$ tel que $n=k\times p$.
  1. Est-ce que $6|n$ est une condition nécessaire à ce que $n$ soit pair?
  2. Est-ce que $6|n$ est une condition suffisante à ce que $n$ soit pair?
Indication
Corrigé
Exercice 7 - Trouver des conditions nécessaires [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Trouver des conditions nécessaires (pas forcément suffisantes) à chacune des propositions suivantes :
  1. Avoir son bac.
  2. Le point $A$ appartient au segment $[BC]$.
  3. Le quadrilatère $ABCD$ est un rectangle.
Corrigé
Exercice 8 - Trouver des conditions suffisantes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Trouver des conditions suffisantes (pas forcément nécessaires) à chacune des propositions suivantes :
  1. Avoir son bac.
  2. Le point $A$ appartient au segment $[BC]$.
  3. Le quadrilatère $ABCD$ est un rectangle.
Corrigé
Exercice 9 - Condition nécessaire, suffisante, pour avoir un rectangle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit la proposition $P$ : "Le quadrilatère $ABCD$ est un rectangle" et les propositions
  1. $Q1$ : "Les diagonales de $ABCD$ ont même longueur"
  2. $Q2$ : "$ABCD$ est un carré"
  3. $Q3$ : "$ABCD$ est un parallélogramme ayant un angle droit"
  4. $Q4$ : "Les diagonales de $ABCD$ sont médiatrices l'une de l'autre"
  5. $Q5$ : "Les diagonales de $ABCD$ ont même milieu".
Dire si chacune des propositions $Q_1$, $Q_2$, $Q_3$, $Q_4$, $Q_5$ est pour $P$ une condition nécessaire non suffisante, une condition suffisante non nécessaire, une condition nécessaire et suffisante, ou ni l'un ni l'autre.
Corrigé
Exercice 10 - Qui est suffisant à qui??? [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $A$, $B$ et $C$ trois propositions. Si on admet que $(A\implies B)\implies C$ est vrai, qui est, avec certitude, nécessaire à qui? Qui est suffisant à qui?
Indication
Corrigé
Quantificateurs
Enoncé
Déterminer parmi les propositions suivantes lesquelles sont vraies :
  1. 136 est un multiple de 17 et 2 divise 167.
  2. 136 est un multiple de 17 ou 2 divise 167.
  3. $\exists x\in \mathbb R,\ (x+1=0\ \textrm{ et }x+2=0)$.
  4. $(\exists x\in\mathbb R,\ x+1=0)\textrm{ et }(\exists x\in\mathbb R,\ x+2=0)$.
  5. $\forall x\in\mathbb R,\ (x+1\neq 0\textrm{ ou }x+2\neq 0)$.
  6. $\exists x\in\mathbb R^*,\ \forall y\in\mathbb R^*,\ \forall z\in\mathbb R^*,\ z-xy=0$;
  7. $\forall y\in\mathbb R^*,\exists x\in\mathbb R^*,\ \forall z\in\mathbb R^*,\ z-xy=0$;
  8. $\forall y\in\mathbb R^*,\forall z\in\mathbb R^*,\ \exists x\in\mathbb R^*,\ z-xy=0$;
  9. $\exists a\in\mathbb R,\ \forall \veps>0,\ |a|<\veps$;
  10. $\forall \veps>0,\ \exists a\in\mathbb R,\ |a|<\veps$.
Corrigé
Exercice 12 - Nier des assertions avec quantificateurs [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f:\mathbb R\to\mathbb R$ une fonction. Nier les assertions suivantes :
  1. $\forall x\in \mathbb R,\ f(x)\neq 0$.
  2. $\forall M>0,\ \exists A>0,\ \forall x\geq A,\ f(x)>M$.
  3. $\forall x\in \mathbb R,\ f(x)>0\implies x\leq 0$.
  4. $\forall \veps>0,\ \exists \eta>0, \forall (x,y)\in I^2,\ \big(|x-y|\leq \eta\implies |f(x)-f(y)|\leq\veps\big).$
Corrigé
Enoncé
Soit $n$ un entier naturel non nul. On note $C_n$ la courbe d'équation $y=(1+x)^n$.
  1. Rappeler l'équation de la tangente à $C_n$ au point $A$ de $C_ n$ d'abscisse 0.
  2. Tracer (par exemple à l'aide d'un logiciel) $C_n$ et $D_n$ lorsque $n=2,3$.
  3. En vous aidant du graphique pour obtenir une conjecture, démontrer si les propositions suivantes sont vraies ou fausses.
    1. $\forall n\in\mathbb N^*,\ \forall x\in\mathbb R,\ (1+x)^n\geq 1+nx$;
    2. $\forall n\in\mathbb N^*,\ \forall x\in\mathbb R_+,\ (1+x)^n \geq 1+nx$;
    3. $\exists n\in\mathbb N^*,\ \forall x\in\mathbb R,\ (1+x)^n =1+nx$;
    4. $\forall n\in\mathbb N^*,\ \exists x\in\mathbb R,\ (1+x)^n=1+nx$;
    5. $\exists n\in\mathbb N^*,\ \forall x\in\mathbb R^*,\ (1+x)^n>1+nx$.
Indication
Corrigé
Exercice 14 - Du texte aux quantificateurs [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f:\mathbb R\to\mathbb R$ une fonction. Exprimer à l'aide de quantificateurs les assertions suivantes :
  1. $f$ est constante;
  2. $f$ n'est pas constante;
  3. $f$ s'annule;
  4. $f$ est périodique.
Corrigé
Exercice 15 - Du quantificateur au texte [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f:\mathbb R\to\mathbb R$ une fonction. Énoncer en langage courant les assertions suivantes écrites à l'aide de quantificateurs. Peut-on trouver une fonction qui satisfait cette assertion? Qui ne la satisfait pas?
  1. $\forall x\in \mathbb R,\ \exists y\in \mathbb R,\ f(x)< f(y);$
  2. $\forall x\in\mathbb R,\ \exists T\in\mathbb R,\ f(x)=f(x+T);$
  3. $\forall x\in\mathbb R,\ \exists T\in\mathbb R^*,\ f(x)=f(x+T);$
  4. $\exists x\in\mathbb R,\ \forall y\in\mathbb R,\ y=f(x).$
Corrigé
Exercice 16 - Limites de validité d'une proposition [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Déterminer les réels $x$ pour lesquels l'assertion suivante est vraie : $$\forall y\in[0,1],\ x\geq y\implies x\geq 2y.$$
Indication
Corrigé