$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Exercices corrigés - Formules intégrales de Cauchy - Inégalités de Cauchy - Applications

Enoncé
Parmi les ouverts suivants, déterminer lesquels sont étoilés :
  1. $\mathbb C\backslash\{z_0\}$ ($z_0\in\mathbb C$);
  2. $\{z\in\mathbb C;\ |z|<R\}$ ($R>0$);
  3. $\{z\in\mathbb C;\ r<|z|<R\}$ ($R>r>0$);
  4. $\mathbb C\backslash D$, où $D$ est une droite;
  5. $\mathbb C\backslash D$, où $D$ est une demi-droite.
Corrigé
Intégration complexe
Enoncé
Calculer l'intégrale $I=\int_\Gamma \bar zdz$, où $\Gamma$ est le chemin joignant le point $(1,1)$ au point $(2,4)$ le long de la parabole d'équation $y=x^2$.
Indication
Corrigé
Exercice 3 - Le long d'un quart de cercle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Calculer $\int_C (z^2+3z)dz$ le long du cercle $|z|=2$, du point $(2,0)$ au point $(0,2)$.
Indication
Corrigé
Enoncé
Soit $\gamma$ l'ellipse défini par $\gamma(t)=a\cos t+ib\sin t$, pour $t\in[0,2\pi]$ et $a,b>0$. Montrer que $\textrm{Ind}_\gamma(0)=1$.
Indication
Corrigé
Exercice 5 - Existence de primitives [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $z_0\in\mathbb C$ et soit $\gamma$ un arc de cercle de centre $z_0$. On note $\alpha\in[0,2\pi]$ l'angle décrit par cet arc de cercle ($\alpha=2\pi$ s'il s'agit du cercle entier). Pour $z\in\mathbb C\backslash\{z_0\}$, on pose $f(z)=\frac1{z-z_0}$.
  1. Calculer l'intégrale de $f$ le long de $\gamma$.
  2. La fonction $f$ admet-elle une primitive dans $\mathbb C\backslash\{z_0\}$?
Corrigé
Applications de la formule de Cauchy
Enoncé
On note $C$ le cercle unité et soit $f$ une fonction holomorphe dans un ouvert $U$ contenant le disque $\overline{D(0,1)}$. Exprimer en fonction des valeurs de $f$ $$I=\int_{C}\left(2+z+\frac{1}{z}\right)\frac{f(z)}{z}dz.$$ En déduire la valeur de $$\int_0^{2\pi}f(e^{it})\cos^2(t/2)dt.$$
Indication
Corrigé
Exercice 7 - Calcul d'une intégrale [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Calculer de deux manières différentes $\int_\gamma \frac{dz}{z}$ où $\gamma(t)=a\cos t+ib\sin t$ avec $t\in[0,2\pi]$, $a,b>0$. En déduire la valeur de l'intégrale $$\int_0^{2\pi}\frac{dt}{a^2\cos^2 t+b^2\sin^2 t}.$$
Indication
Corrigé
Exercice 8 - Transformée de Fourier de la Gaussienne [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Le but de l'exercice est de calculer, pour $t\in\mathbb R$, l'intégrale suivante : $$\int_{\mathbb R}e^{-x^2}e^{-itx}dx.$$ Pour cela, on pose $f(z)=e^{-z^2}$ et on rappelle que $\int_{\mathbb R}e^{-x^2}=\sqrt\pi$. Pour $R>0$, soit $\Gamma_R$ le rectangle dont les sommets sont $-R$, $R$, $R+it/2$ et $-R+it/2$.
  1. Que vaut $\int_{\Gamma_R}f(z)dz$?
  2. Démontrer que $\int_{R}^{R+it/2}f(z)dz\to 0$ et que $\int_{-R}^{-R+it/2}f(z)dz\to 0$ lorsque $R\to +\infty$.
  3. En déduire la valeur de $\int_{-\infty+it/2}^{+\infty+it/2}f(z)dz$.
  4. En déduire la valeur de l'intégrale $\int_{\mathbb R}e^{-x^2}e^{-itx}dx$ (qui est la transformée de Fourier de la fonction Gaussienne).
Indication
Corrigé
Exercice 9 - Calcul d'une intégrale [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $\Gamma_R$ le contour défini par le segment $[-R,R]$ et le demi-cercle situé dans le demi-plan supérieur de diamètre le segment $[-R,R]$, avec $R>1$.
  1. Calculer $\displaystyle I_R=\int_{\Gamma_R}\frac{e^{iz}}{1+z^2}dz$.
  2. En déduire $\displaystyle \int_{-\infty}^{+\infty}\frac{\cos x}{1+x^2}dx=\frac{\pi}e$.
Indication
Corrigé
Exercice 10 - Formule de Cauchy au bord [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f$ une fonction holomorphe dans $D(0,R)$ et continue dans $\overline{D(0,R)}$. Pour tout $z\in D(0,R)$, prouver que $$f(z)=\frac{1}{2i\pi}\int_{C(0,R)}\frac{f(w)}{w-z}dw.$$
Indication
Corrigé
Exercice 11 - Un calcul d'intégrale par la formule de Cauchy [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On rappelle que la fonction sinus hyperbolique est définie par $$\textrm{sh}(z)=\frac{e^z-e^{-z}}{2}.$$ Soit $R>0$. Calculer $\int_{C(0,R)}\frac{\textrm{sh}(w)}{w^8}dw.$
Corrigé
Exercice 12 - Diamètre d'une fonction et formule de Cauchy [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f$ une fonction holomorphe dans le disque $D(0,1)$. On appelle diamètre de $f$ la quantité $$d=\sup_{w,z\in D(0,1)}|f(z)-f(w)|$$ (qui peut être infinie).
  1. Démontrer que $2f'(0)=\frac{1}{2i\pi}\int_{C(0,r)}\frac{f(w)-f(-w)}{w^2}dw$ pour tout $r\in ]0,1[$.
  2. En déduire que $2|f'(0)|\leq 2d$.
Indication
Corrigé
Inégalités de Cauchy, théorème de Liouville
Exercice 13 - Un théorème de Liouville précisé [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f$ une fonction entière. Pour tout $r>0$, on pose $$M(r)=\sup_{|z|=r}|f(z)|.$$
  1. On suppose qu'il existe $p\in\mathbb N$ tel que $$\lim_{r\to+\infty} \frac{M(r)}{r^{p+1}}=0.$$ Montrer que $f$ est un polynôme de degré au plus $p$.
  2. On suppose qu'il existe $R\geq 0$, $K>0$ et $p\in\mathbb N$ tels que $$|z|>R\implies |f(z)|\leq K|z|^p.$$ Montrer qu'alors $f$ est un polynôme de degré au plus $p$. Montrer de plus que si $R=0$, alors $f$ est un monôme de degré $p$ ou la fonction nulle.
  3. En déduire que si $f$ vérifie $$\forall z\in\mathbb C,\ |f'(z)|\leq |z|$$ alors $f$ est de la forme $f(z)=a+bz^2$ où $a$ et $b$ sont des complexes tels que $|b|\leq 1/2$.
Indication
Corrigé
Enoncé
Soit $f$ une fonction entière de période $1$ et $i$. Montrer que $f$ est constante.
Indication
Corrigé
Exercice 15 - Partie réelle bornée [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $f$ une fonction entière dont la partie réelle est bornée. Démontrer que $f$ est constante.
Indication
Corrigé
Enoncé
Soit $f$ une fonction entière non constante. Montrer que $f(\mathbb C)$ est dense dans $\mathbb C$.
Indication
Corrigé
Exercice 17 - Inégalités de Cauchy renforcées [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $D$ le disque $D(0,1)$ et $f(z)=\sum_{n=0}^{+\infty}a_nz^n$ une fonction holomorphe dans $D$. On suppose que $|f(z)|\leq (1-|z|)^{-1}$ pour tout $z\in D$. Montrer que $$|a_n|\leq \left(1+\frac{1}{n}\right)^n(n+1)\leq e(n+1).$$
Indication
Corrigé
Enoncé
Soit $f(z)=\sum_{n=0}^{+\infty}a_n z^n$ une fonction holomorphe sur $D(0,1)$. Pour $0\leq r<1$, on pose $$M(r,f)=\max_{|z|=r}|f(z)|,\ M_1(r,f)=\sum_{n=0}^{+\infty}|a_n|r^n,\ M_2(r,f)=\left(\frac{1}{2\pi}\int_0^{2\pi}|f(re^{i\theta})|^2d\theta\right)^{1/2}.$$
  1. Montrer que, pour tout $r<1$, on a $$M_2(f,r)=\left(\sum_{n=0}^{+\infty}|a_n|^2 r^{2n}\right)^{1/2}.$$ En déduire que $r\mapsto M_2(f,r)$ est une fonction croissante.
  2. Soit $\alpha>1$. Montrer que, si $r\alpha<1$, alors $$M(r,f)\leq M_1(r,f)\leq \frac{\alpha}{\alpha-1}M(\alpha r,f).$$
  3. Soit $r,\beta\in[0,1[$. Montrer que $$\sqrt{1-\beta^2}M_1(\beta r,f)\leq M_2(r,f)\leq M(r,f).$$
Indication
Corrigé
Exercice 19 - Fonctions entières de type exponentiel [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On dit qu'une fonction entière est de \emph{type exponentiel} s'il existe un réel $C$ telle que $f(z)=O(e^{C|z|})$ quand $|z|$ tend vers l'infini. La borne inférieure des nombres $C$ vérifiant cette propriété s'appelle le \emph{type} de la fonction $f$.
  1. Montrer que les fonction $z\mapsto e^z$ et $z\mapsto \sin(z)$ sont de type exponentiel 1.
  2. Soit $C>0$ et soit $f$ une fonction entière de type exponentiel inférieur strict à $C$. On note $c_n$ les coefficients du développement en série de Taylor de $f$ en $0$.
    1. Montrer qu'il existe $A>0$ tels que $|c_n|r^n\leq Ae^{Cr}$ pour tout $r\geq 0$.
    2. En déduire que $c_n=O\left(\left(\frac{Ce}{n}\right)^n\right)$.
  3. Réciproquement, soit $f(z)=\sum_{n\geq 0}c_n z^n$ dont les coefficients vérifient $c_n=O\left(\left(\frac{Ce}{n}\right)^n\right)$. Vérifier que $f$ est exponentiel de type inférieur ou égal à $C$.
Indication
Corrigé
Exercice 20 - Singularité des séries entières [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $S(z)=\sum a_nz^n$ une série entière de rayon de convergence $R$ fini et non nul. On dit qu'un point $\xi$ appartenant au cercle $C(0,R)$ de centre $0$ et de rayon $R$ est un \emph{point régulier} pour $S$ si la fonction $S$ admet un prolongement holomorphe au voisinage de $\xi$. Autrement dit, s'il existe un ouvert $\Omega$ contenant $\xi$ et une fontion $F$ holomorphe sur $\Omega$ telle que $F=S$ sur $\Omega\cap D(0,R)$. Un point qui n'est pas régulier est appelé \emph{point singulier}. L'ensemble des points singuliers de $S$ est noté $\textrm{sing}(S)$.
  1. Déterminer $\textrm{sing}(S)$ lorsque $S(z)=\sum_{n\geq 0}z^n$ et $S(z)=\sum_{n\geq 0}\frac{1}{(n+1)(n+2)}z^{n+2}$. Y-a-t-il un lien entre la régularité d'un point $\xi$ et la convergence de la série $\sum_{n\geq 0}a_n\xi^n$?
  2. Montrer que $\textrm{sing}(S)$ est un fermé de $C(0,R)$.
  3. On suppose que $\textrm{sing}(S)$ est vide. Montrer qu'il existe $r>R$ tel que $S$ se prolonge en une fonction holomorphe dans $D(0,r)$.
  4. En déduire que $\textrm{sing}(S)$ est non-vide.
Indication
Corrigé