$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Exercices corrigés - Fonctions usuelles : fonctions trigonométriques et trigonométriques réciproques

Fonctions sinus, cosinus, tangente
Enoncé
On considère la fonction $f$ définie sur $\mathbb R$ par $$f(x)=\cos3x\cos^3x.$$
  1. Pour $x\in\mathbb R$, exprimer $f(-x)$ et $f(x+\pi)$ en fonction de $f(x)$. Sur quel intervalle $I$ peut-on se contenter d'étudier $f$?
  2. Vérifier que $f'(x)$ est du signe de $-\sin(4x)$, et on déduire le sens de variation de $f$ sur $I$.
  3. Tracer la courbe représentative de $f$.
Indication
Corrigé
Enoncé
On considère la fonction $f$ définie par $$f(x)=\frac{\sin x}{1+\sin x}.$$ On note $\Gamma$ sa courbe représentative dans un repère orthonormé.
  1. Quel est le domaine de définition de $f$? Vérifier que $f$ est $2\pi$-périodique.
  2. Comparer $f(\pi-x)$ et $f(x)$. Que dire sur $\Gamma$?
  3. Étudier les variations de $f$ sur l'intervalle $\left]-\frac\pi 2,\frac\pi 2\right]$, puis déterminer la limite de $f$ en $-\pi/2$.
  4. Construire $\Gamma$ à l'aide des renseignements précédents.
Indication
Corrigé
Fonctions circulaires réciproques
Enoncé
Déterminer la valeur de $\arcsin(-1/2)$, $\arccos(-\sqrt 2/2)$ et $\arctan(\sqrt 3)$.
Indication
Corrigé
Enoncé
Calculer $$\arccos \left(\cos\frac{2\pi}3\right),\quad \arccos\left(\cos\frac{-2\pi}{3}\right),\quad\arccos\left(\cos\frac{4\pi}{3}\right).$$
Indication
Corrigé
Enoncé
Simplifier les expressions suivantes : $$\tan(\arcsin x),\quad \sin(\arccos x),\quad \cos(\arctan x).$$
Indication
Corrigé
Enoncé
Soit $f$ la fonction définie par $$f(x)=\arcsin\left(2x\sqrt{1-x^2}\right).$$
  1. Quel est l'ensemble de définition de $f$?
  2. En posant $x=\sin t$, simplifier l'écriture de $f$.
Indication
Corrigé
Enoncé
  1. Démontrer que, pour tout $t\in]-\pi/2,\pi/2[\backslash\{0\}$, on a $ \displaystyle \frac{1-\cos t}{\sin t}=\tan(t/2).$
  2. En déduire une forme simplifiée de $\displaystyle \arctan\left(\frac{\sqrt{1+x^2}-1}x\right),$ pour $x\neq 0$.
Indication
Corrigé
Enoncé
Montrer que, pour tout $x\in[-1,1]$, $\arccos(x)+\arcsin(x)=\frac\pi2$.
Indication
Corrigé
Enoncé
Soit $f$ la fonction $x\mapsto \arcsin\left(\frac{1+x}{1-x}\right)$. Donner son domaine de définition, son domaine de dérivabilité, quis étudier et tracer la fonction.
Indication
Corrigé
Enoncé
  1. Pour quelles valeurs de $x$ a-t-on $\sqrt{1-x^2}\leq x$?
  2. Etudier la fonctions $x\mapsto \sqrt{1-x^2}\exp\big(\arcsin(x)\big).$
Indication
Corrigé
Enoncé
Résoudre dans $\mathbb R$ les équations suivantes : $$\begin{array}{lll} \mathbf{1.}\ \arccos(x)=\frac\pi 6&\quad&\mathbf{2.\ } \arctan(x/2)=\pi\\ \mathbf{3.}\ \arcsin(x)=\arccos(x). \end{array}$$
Indication
Corrigé
Exercice 12 - Existence de solutions [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Discuter, suivant les valeurs des paramètres $a$ et $b$, l'existence de solutions pour les équations suivantes :
  1. $\arcsin x=\arcsin a+\arcsin b$;
  2. $\arcsin x=\arccos a+\arccos b$;
(on ne demande pas de résoudre les équations!).
Indication
Corrigé
Enoncé
Résoudre les équations suivantes : $$\begin{array}{lll} \mathbf{1.}\ \arcsin x=\arccos\frac13-\arccos\frac14&\quad&\mathbf{2.}\ \arcsin\frac{2x}{1+x^2}=\frac{\pi}3;\\ \mathbf{3.}\ \arctan 2x+\arctan 3x=\frac{\pi}4;&\quad&\mathbf{4.}\ \arcsin x+\arcsin \sqrt{1-x^2}=\frac\pi2;\\ \mathbf{5.}\ \arcsin x=\arctan 2+\arctan 3. \end{array}$$
Indication
Corrigé
Enoncé
Calculer $\arctan 2+\arctan 5+\arctan8.$
Indication
Corrigé
Enoncé
Soit $p\in\mathbb N$.
  1. Vérifier que $\arctan(p+1)-\arctan p=\arctan\left(\frac{1}{p^2+p+1}\right)$.
  2. Déterminer la limite de $S_n=\sum_{p=0}^n\arctan\left(\frac1{p^2+p+1}\right)$.
Indication
Corrigé
Enoncé
  1. Montrer que pour tout $x\in\mathbb R$, $\arctan x+2\arctan\left(\sqrt{1+x^2}-x\right)=\frac{\pi}2$.
  2. Calculer, pour tous $x,y\in\mathbb R$ avec $y\neq 1/x$, $$\arctan\left(\frac{x+y}{1-xy}\right)-\arctan x-\arctan y.$$
Indication
Corrigé
Exercice 17 - Polynômes de Chebychev [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour $n\in\mathbb N$, on pose $f_n(x)=\cos(n\arccos x)$ et $g_n(x)=\frac{\sin(n \arccos x)}{\sqrt{1-x^2}}$. Prouver que $f_n$ et $g_n$ sont des fonctions polynomiales.
Indication
Corrigé