$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Exercices corrigés - Fonctions usuelles : logarithme, exponentielle, puissances

Fonction logarithme
Enoncé
Résoudre sur $\mathbb R$ les équations suivantes : $$ \begin{array}{lll} {\bf 1.}\ \ln(x^2-1)-\ln(2x-1)+\ln 2=0&\quad\quad&{\bf 2.}\ \log_{10}(x+2)-\log_{10}(x+1)=\log_{10}(x-1). \end{array} $$
Indication
Corrigé
Exercice 2 - Nombre de chiffres en base 10 [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Quel est le nombre de chiffres en base 10 du nombre $2^{43112609}$?
Indication
Corrigé
Exercice 3 - Tangente à la courbe représentative du logarithme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Y-a-t-il un point de la courbe représentative du logarithme tel que la tangente à cette courbe représentative passant par ce point passe par l'origine?
Indication
Corrigé
Enoncé
Démontrer que, pour tout $x\geq 0$, on a $$x-\frac{x^2}2\leq \ln(1+x)\leq x.$$
Indication
Corrigé
Enoncé
Résoudre les inéquations suivantes (on précisera le domaine de définition) : $$\begin{array}{rcl} \mathbf{1.}\ (2x-7)\ln(x+1)>0&\quad\quad&\mathbf{2.}\ \ln\left(\frac{x+1}{3x-5}\right)\leq 0. \end{array}$$
Indication
Corrigé
Enoncé
Résoudre les systèmes d'équations suivantes : $$\begin{array}{lll} \mathbf{1.}\ \left\{ \begin{array}{rcl} x+y&=&30\\ \ln(x)+\ln(y)&=&3\ln 6 \end{array} \right.&\quad\quad&\mathbf{2.}\ \left\{ \begin{array}{rcl} x^2+y^2&=&218\\ \ln(x)+\ln(y)&=&\ln(91) \end{array}\right. \end{array}$$
Indication
Corrigé
Exercice 7 - Irrationalité du logarithme décimal de $2$ [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Démontrer que $\log_{10}2$ est irrationnel.
Indication
Corrigé
Enoncé
Montrer que l'équation $$\ln(1+|x|)=\frac 1{x-1}$$ possède exactement une solution $\alpha$ dans $\mathbb R\backslash \{1\}$ et que $1<\alpha<2$.
Indication
Corrigé
Enoncé
Discuter, selon les valeurs de $a\in\mathbb R$, le nombre de solutions de l'équation $$\frac 1{x-1}+\frac 12\ln\left|\frac{1+x}{1-x}\right|=a.$$
Indication
Corrigé
Exercice 10 - Une inégalité sur les entiers [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Déterminer les entiers naturels $n$ tels que $2^n\geq n^2$.
Indication
Corrigé
Exercice 11 - Le logarithme n'est pas une fraction rationnelle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Soit $f$ un polynôme de degré $n$, $f(x)=a_n x^n+\dots+a_1x+a_0$, avec $a_n\neq 0$. Démontrer que $x^{-n} f(x)$ admet une limite non-nulle en $+\infty$.
  2. On suppose qu'il existe deux polynômes $P$ et $Q$ tels que, pour tout $x>0$, $$\ln x=\frac{P(x)}{Q(x)}.$$ On note $p=\deg P$ et $q=\deg Q$. Démontrer que $x^{q-p}\ln (x)$ admet une limite non-nulle en $+\infty$.
  3. En déduire que l'hypothèse fait à la question précédente est fausse.
Indication
Corrigé
Exercice 12 - Logarithme du milieu et milieu des logarithmes [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Démontrer que, pour tous $x,y>0$, on a $$\ln\left(\frac{x+y}2\right)\geq\frac{\ln(x)+\ln(y)}2.$$
Indication
Corrigé
Fonction exponentielle
Exercice 13 - Parité et fonction exponentielle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Étudier la parité des fonctions suivantes : $$f_1(x)=e^x-e^{-x},\ f_2(x)=\frac{e^{2x}-1}{e^{2x}+1},\ f_3(x)=\frac{e^x}{(e^x+1)^2}.$$
Indication
Corrigé
Enoncé
Résoudre sur $\mathbb R$ les équations suivantes : $$ \begin{array}{lll} {\bf 1.}\ e^{2x}-e^x-6=0&\quad\quad&{\bf 2.}\ 3e^x-7e^{-x}-20=0. \end{array}$$
Indication
Corrigé
Enoncé
Résoudre les systèmes d'équations suivantes : $$\begin{array}{lll} \mathbf{1.}\ \left\{ \begin{array}{rcl} e^xe^y&=&10\\ e^{x-y}&=&\frac 25 \end{array} \right.&\quad\quad&\mathbf{2.}\ \left\{ \begin{array}{rcl} e^x-2e^y&=&-5\\ 3e^x+e^y&=&13 \end{array}\right.\\ \mathbf{3.}\ \left\{ \begin{array}{rcl} 5e^x-e^y&=&19\\ e^{x+y}&=&30 \end{array} \right. \end{array}$$
Indication
Corrigé
Enoncé
Soit $g:\mathbb R_+\to\mathbb R$ définie par $g(x)=(x-2)e^{x}+(x+2)$. Démontrer que $g\geq 0$ sur $\mathbb R_+$.
Indication
Corrigé
Exercice 17 - Limites et croissances comparées [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Déterminer la limite en $+\infty$ des fonctions suivantes : $$ \begin{array}{lll} \mathbf 1.\ \ln(x)-e^x&\quad&\mathbf 2.\ \frac{x^3}{\exp(\sqrt x)}\\ \mathbf 3.\ \frac{\ln(1+e^x)}{\sqrt x}&\quad&\mathbf 4.\ \frac{\exp(\sqrt x)+1}{\exp(x^2)+1}. \end{array} $$
Indication
Corrigé
Enoncé
Un inspecteur qui arrive sur le lieu d'un crime demande au médecin légiste de prendre la température de la victime. Elle est de 32°C. Il prend la température de la pièce, qui est de 20°C. La loi de Newton sur le refroidissement d'un objet en milieu ambiant permet de modéliser la température de la victime en posant $T(t)=Ae^{-ct}+20$ où $t>0$ représente le temps, exprimé en heures, depuis la mort de la victime et $T(t)$ la température de la victime à l'instant $t$, en degrés Celsius. Sachant qu'une demi-heure plus tard, la température de la victime est de 31°C, déterminer l'heure du crime.
Indication
Corrigé
Exercice 19 - Point le plus proche de l'origine [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On considère la courbe de la fonction exponentielle dans un repère orthonormé $(O,\vec i,\vec j)$.
  1. Pour $x\in\mathbb R$, on pose $g(x)=x+e^{2x}$. Démontrer qu'il existe un réel $c$ tel que $g(x)< 0$ si $x< c$ et $g(x)> 0$ si $x> c$.
  2. En déduire qu'il y a un unique point sur la courbe de la fonction exponentielle qui minimise la distance à l'origine. On le note $M_0$.
  3. Démontrer que la tangente à la courbe en $M_0$ est perpendiculaire à la droite $(OM_0)$.
Indication
Corrigé
Fonctions puissances
Enoncé
Résoudre l'équation $x^{\sqrt x}={\left(\sqrt x\right)}^x$.
Indication
Corrigé
Enoncé
Résoudre l'équation suivante : $$\left\{ \begin{array}{rcl} x^y&=&y^x\\ x^2&=&y^3\\ \end{array} \right.$$ avec $(x,y)\in]0,+\infty[^2$.
Corrigé
Enoncé
Simplifier les expressions suivantes : $$\begin{array}{lll} \displaystyle \mathbf{1.}\ x^{\frac{\ln(\ln x)}{\ln x}};&\quad&\displaystyle\mathbf{2.}\ \log_x\left(\log_x x^{x^y}\right)\\ \end{array}$$
Indication
Corrigé
Enoncé
Étudier la fonction $f:x\mapsto x^{-\ln x}$.
Indication
Corrigé
Enoncé
Déterminer les limites suivantes : $$\begin{array}{lll} \displaystyle \mathbf{1.}\ \lim_{x\to+\infty}\frac{{(x^x)}^x}{x^{(x^x)}};&\quad&\displaystyle\mathbf{2.}\ \lim_{x\to+\infty}\frac{a^{(b^x)}}{b^{(a^x)}}\textrm{ avec }1<a<b;\\ \displaystyle \mathbf{3.}\ \lim_{x\to+\infty}\frac{a^{(a^x)}}{x^{(x^a)}}\textrm{ avec }a>1. \end{array}$$
Indication
Corrigé
Exercice 25 - Racine d'une somme de puissances [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $p\geq 2$ un entier et $0<a_1<\dots<a_p$ des nombres réels positifs.
  1. Montrer que, pour tout $a>a_p$, l'équation $a_1^x+\dots+a_p^x=a^x$ admet une unique racine $x_a$.
  2. Etudier le sens de variation de $a\mapsto x_a$.
  3. Déterminer l'existence et calculer $\lim_{a\to+\infty}x_a$ et $\lim_{a\to+\infty}x_a\ln(a)$.
Indication
Corrigé
Exercice 26 - Équation diophantienne [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Déterminer tous les couples $(n,p)$ d'entiers naturels non nuls tels que $n^p=p^n$ et $n\neq p$.
Indication
Corrigé
Enoncé
Trouver la plus grande valeur de $\sqrt[n]n$, $n\in\mathbb N^*$.
Indication
Corrigé
Master Meef
Enoncé
Dans l'exercice, il est demandé de démontrer que $\lim_{x\to+\infty}\ln(x)=+\infty$ (sachant qu'on peut utiliser les propriétés de la fonction exponentielle). Voici les réponses de deux étudiants. Qu'en pensez-vous?
Étudiant 1 : Il faut montrer que, pour tout $M\in\mathbb R$, il existe $x\in\mathbb R_+$ tel que $\ln(x)\geq M$, c'est-à-dire $x\geq e^M$. Il en existe, et donc $\lim_{x\to+\infty}\ln(x)=+\infty$.
Étudiant 2 : On a $\ln(e^x)=x$. Ainsi, $\lim_{x\to+\infty}\ln(e^x)=\lim_{x\to+\infty}x=+\infty$. En posant $X=e^x$, on a $\lim_{X\to+\infty}\ln(X)=+\infty$.
Corrigé