$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Exercices corrigés - Séries numériques - études pratiques

Convergence de séries à termes positifs
Enoncé
Etudier la convergence des séries $\sum u_n$ suivantes : $$\begin{array}{lllll} \displaystyle \mathbf 1.\ u_n=\frac{n}{n^3+1}&&\displaystyle \mathbf 2.\ u_n=\frac{\sqrt n}{n^2+\sqrt n}&&\displaystyle \mathbf 3.\ \dis u_n=n\sin(1/n)\\ \displaystyle \mathbf 4.\ u_n=\frac{1}{\sqrt{n}}\ln\left(1+\frac{1}{\sqrt{n}}\right)&& \displaystyle \mathbf 5.\ u_n=\frac{\sqrt {n+1}-\sqrt{n}}{n}&&\displaystyle \mathbf 6.\ u_n=\frac{(-1)^n +n}{n^2+1}\\ \displaystyle \mathbf 7.\ u_n=\frac{1}{n!}&&\displaystyle \mathbf 8. \ u_n=\frac{\ln(n^n)}{n!}&& \displaystyle \mathbf 9.\ u_n=\ln\left(\frac{n^2+n+1}{n^2+n-1}\right) \end{array}$$
Indication
Corrigé
Enoncé
Étudier la convergence des séries $\sum u_n$ suivantes : $$\begin{array}{lllll} \displaystyle \mathbf 1.\ u_n=\left(\frac{1}{2}\right)^{\sqrt{n}}&& \displaystyle \mathbf 2.\ u_n=a^n n!,\ a\in\mathbb R&&\displaystyle \mathbf 3. \ u_n=ne^{-\sqrt n}\\ \displaystyle {\bf 4.} \ u_n=\frac{\ln(n^2+3)\sqrt{2^n+1}}{4^n}.&& \displaystyle {\bf 5}.\ \ u_n=\frac{\ln n}{\ln(e^n -1)}&& \displaystyle \mathbf 6.\ \left(\frac 1n\right)^{1+\frac 1n}. \end{array}$$
Corrigé
Enoncé
Étudier les séries de terme général suivant : $$\begin{array}{lll} \displaystyle \displaystyle \mathbf 1.\ u_n=\frac{n!}{n^{an}},\ a\in\mathbb R&&\displaystyle \mathbf 2.\ \ u_n=\left(\frac{n-1}{2n+1}\right)^n\\ \displaystyle \mathbf 3.\ \ u_n=\left(\frac{n-1}{2n+1}\right)^{n(-1)^n}&&\displaystyle \mathbf 4.\ u_n=\frac{n^\alpha(\ln n)^n}{n!}\textrm{ avec }\alpha\in\mathbb R. \end{array}$$
Indication
Corrigé
Exercice 4 - A partir de développements limités [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Donner la nature des séries numériques $\sum u_n$ suivantes : $$\begin{array}{lll} \displaystyle\mathbf 1.\ u_n=1-\cos\frac{\pi}{n}&& \displaystyle \displaystyle \mathbf 2.\ u_n=\sqrt{\ch\frac{1}{n}-1}\\ \displaystyle \displaystyle \mathbf 3.\ u_n=\left(\frac{n}{n+1}\right)^{n^2}\\ \end{array}.$$
Indication
Corrigé
Exercice 5 - Avec des paramètres - 1 [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Discuter, suivant la valeur des paramètres, la convergence des séries suivantes : $$\begin{array}{lll} \displaystyle \mathbf 1.\ e^{\frac 1n}-a-\frac{b}{n},\ a,b\in\mathbb R && \displaystyle \mathbf 2.\ \sqrt[3]{n^3+an}-\sqrt{n^2+3},\ a\in\mathbb R \end{array}$$
Corrigé
Exercice 6 - Avec des paramètres - 2 [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Déterminer en fonction des paramètres la nature des séries numériques $\sum u_n$ suivantes : $$\begin{array}{lll} \displaystyle \mathbf 1.\ u_n=\left(n\sin\left(\frac{1}{n}\right)\right)^{n^\alpha},\ \alpha\geq 0&& \displaystyle \mathbf 2.\ \frac{1}{n^\alpha}\left((n+1)^{1+1/n}-(n-1)^{1-1/n}\right),\ \alpha\in\mathbb R. \end{array}$$
Indication
Corrigé
Enoncé
Étudier la nature des séries $\sum u_n$ suivantes :
  1. $u_n=1/n$ si $n$ est un carré, et 0 sinon.
  2. $u_n=\arctan(n+a)-\arctan(n)$, avec $a>0$.
Indication
Corrigé
Exercice 8 - Cas limite de la règle de d'Alembert [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit, pour $n\geq 1$ et $a>0$, la suite $u_n=\frac{a^n n!}{n^n}$.
  1. Étudier la convergence de la série $\sum_n u_n$ lorsque $a\neq e$.
  2. Lorsque $a=e$, prouver que, pour $n$ assez grand, $u_{n+1}/u_n\geq 1$. Que dire de la nature de la série $\sum_n u_n$?
Indication
Corrigé
Exercice 9 - Cas limite de la règle de d'Alembert [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Soit, pour tout entier $n\geq 1$, $\dis u_n=\frac{1\times 3\times 5\times\dots\times (2n-1)}{2\times 4\times6\times\dots\times(2n)}$. Quelle est la limite de $u_{n+1}/u_n$? Montrer que la suite $(nu_n)$ est croissante. En déduire que la série de terme général $u_n$ est divergente.
  2. Soit, pour tout entier $n\geq 2$, $\dis v_n=\frac{1\times 3\times 5\times\dots\times (2n-3)}{2\times 4\times6\times\dots\times(2n)}$. Quelle est la limite de $v_{n+1}/v_n$? Montrer que, si $1<\alpha<3/2$, on a $(n+1)^\alpha v_{n+1}\leq n^\alpha v_n$. En déduire que la série de terme général $v_n$ converge.
Indication
Corrigé
Enoncé
Étudier la convergence des séries $\sum u_n$ suivantes : $$\begin{array}{lll} \displaystyle\mathbf 1.\ u_n=\frac{1+\frac{1}{2}+\dots+\frac{1}{n}}{\ln(n!)}&& \displaystyle\mathbf 2.\ u_n=\int_0^{\pi/n}\frac{\sin^3 x}{1+x}dx\\ \displaystyle\mathbf 3.\ u_1\in\mathbb R,\ u_{n+1}=e^{-u_n}/n^\alpha, \alpha\in\mathbb R. \end{array}$$
Indication
Corrigé
Exercice 11 - Série des inverses des nombres premiers [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(p_k)_{k\geq 1}$ la suite ordonnée des nombres premiers. Le but de l'exercice est d'étudier la divergence de la série $\sum_{k\geq 1}\frac{1}{p_k}$. Pour $n\geq 1$, on pose $V_n=\prod_{k=1}^n \frac{1}{1-\frac1{p_k}}$.
  1. Montrer que la suite $(V_n)$ est convergente si et seulement si la suite $(\ln V_n)$ est convergente.
  2. En déduire que la suite $(V_n)$ est convergente si et seulement si la série $\sum_{k\geq 1}\frac{1}{p_k}$ est convergente.
  3. Démontrer que $$V_n=\prod_{k=1}^n\left(\sum_{j\geq 0}\frac{1}{p_k^j}\right).$$
  4. En déduire que $V_n\geq\sum_{j=1}^n \frac{1}j$.
  5. Quelle est la nature de la série $\sum_{k\geq 1}\frac{1}{p_k}$?
  6. Pour $\alpha\in\mathbb R$, quelle est la nature de la série $\sum_{k\geq 1}\frac{1}{p_k^\alpha}$?
Indication
Corrigé
Exercice 12 - Valeur absolue et sinus [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Étudier la convergence de la série de terme général $\frac{|\sin(n)|}{n}$.
Indication
Corrigé
Enoncé
On note $A$ l'ensemble des entiers naturels non-nuls dont l'écriture décimale ne comporte pas de 9. On énumère $A$ en la suite croissante $(k_n)$. Quelle est la nature de la série $\sum_n \frac1{k_n}$?
Indication
Corrigé
Convergence de séries à termes quelconques
Exercice 14 - Sans le critère des séries alternées [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On considère la série $\sum_{n\geq 1}\frac{(-1)^k}k$, et on note, pour $n\geq 1$, $$S_n=\sum_{k=1}^n \frac{(-1)^k}{k},\ u_n=S_{2n},\ v_n=S_{2n+1}.$$
  1. La série est-elle absolument convergente?
  2. Démontrer que les deux suites $(u_n)$ et $(v_n)$ sont adjacentes.
  3. Conclure que la série est convergente.
Indication
Corrigé
Enoncé
Étudier la nature des séries $\sum u_n$ suivantes : $$\begin{array}{lll} \displaystyle\mathbf 1.\ u_n=\frac{\sin n^2}{n^2}&&\displaystyle\mathbf 2.\ u_n=\frac{(-1)^n\ln n}{n}\\ \displaystyle\mathbf 3.\ u_n=\frac{\cos (n^2\pi)}{n\ln n} \end{array}$$
Indication
Corrigé
Enoncé
Soit $f:[0,1]\to\mtr$ une fonction continue. Montrer que la série de terme général $\frac{1}{n}\int_0^1 t^nf(t)dt$ est convergente.
Indication
Corrigé
Exercice 17 - Une erreur classique... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. Montrer que la série $\sum_n \frac{(-1)^n}{\sqrt n}$ converge.
  2. Démontrer que $\displaystyle \frac{(-1)^n}{\sqrt n+(-1)^n}=\frac{(-1)^n}{\sqrt n}-\frac1n+\frac{(-1)^n}{n\sqrt n}+o\left(\frac 1{n\sqrt n}\right)$.
  3. Étudier la convergence de la série $\displaystyle \sum_n \frac{(-1)^n}{\sqrt n+(-1)^n}$.
  4. Qu'a-t-on voulu mettre en évidence dans cet exercice?
Indication
Corrigé
Enoncé
Étudier la convergence des séries suivantes : $$\begin{array}{lll} \displaystyle\mathbf 1.\ u_n=\ln\left(1+\frac{(-1)^n}{2n+1}\right)&&\displaystyle\mathbf 2. \frac{(-1)^n}{\sqrt{n^\alpha+(-1)^n}},\ \alpha>0\\ \displaystyle\mathbf 3. \frac{(-1)^n}{n^\alpha+(-1)^nn^\beta},\ \alpha,\beta\in\mathbb R. \end{array}$$
Indication
Corrigé
Enoncé
Discuter la nature de la série de terme général $$u_n=\frac{a^n2^{\sqrt n}}{2^{\sqrt n}+b^n},$$ où $a$ et $b$ sont deux nombres complexes, $a\neq 0$.
Indication
Corrigé
Exercice 20 - Discussion suivant un paramètre [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Suivant la position du point de coordonnées $(x,y)$ dans le plan, étudier la nature de la série de terme général $$u_n=\frac{x^n}{y^n+n}.$$
Corrigé
Exercice 21 - Reste d'une série alternée [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On fixe $\alpha>0$ et on pose $u_n=\sum_{p=n}^{+\infty}\frac{(-1)^p}{p^\alpha}$. Le but de l'exercice est démontrer que la série de terme général $u_n$ converge.
  1. Soit $n\geq 1$ fixé. On pose $$v_p=\frac{1}{(p+n)^\alpha}-\frac{1}{(p+n+1)^\alpha}.$$ Démontrer que la suite $(v_p)$ décroît vers 0. En déduire la convergence de $\sum_{p=0}^{+\infty}(-1)^pv_p$. Quel est le signe de sa somme?
  2. En appliquant le critère des séries alternées, démontrer que la série de terme général $(u_n)$ converge.
Indication
Corrigé
Enoncé
On considère deux suites complexes $(u_n)$ et $(v_n)$. On s'intéresse à la convergence de la série $\sum_n u_nv_n$. Pour $n\geq 1$, on note $s_n=\sum_{k=0}^n u_k$.
  1. Montrer que, pour tout $(p,q)\in\mathbb N^2$ tel que $p\leq q$, on a : $$\sum_{k=p}^q u_kv_k=s_qv_q-s_{p-1}v_p+\sum_{k=p}^{q-1}s_k(v_k-v_{k+1}).$$
  2. Montrer que si la suite $(s_n)$ est bornée, et si la suite $(v_n)$ est à valeurs dans $\mathbb R^+$, décroissante et de limite nulle, alors $\sum_n u_nv_n$ est convergente.
  3. Montrer que la série $\sum_{n\geq 1}\frac{\sin(n\theta)}{\sqrt n}$ converge pour tout $\theta\in\mathbb R$.
Indication
Corrigé
Exercice 23 - Décomposition - avec Abel [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Étudier la convergence des séries suivantes : $$\begin{array}{lll} \dis\mathbf 1.\ \sin\left(\frac{\sin n}{\sqrt[3]{n}}\right)&&\dis\mathbf 2.\ \frac{(-1)^nn\cos n}{n\sqrt{n}+\sin n}. \end{array}$$
Indication
Corrigé
Exercice 24 - Terme général donné par un produit [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Étudier la nature de la série de terme général $$u_n=\prod_{q=2}^n\left(1+\frac{(-1)^q}{\sqrt q}\right).$$
Indication
Corrigé
Enoncé
Montrer que la série de terme général $u_n=\frac{\cos(\ln n)}{n}$ est divergente.
Indication
Corrigé
Enoncé
Étudier les séries de terme général :
  1. $u_n=\sin(\pi e n!)$ et $v_n=\sin\left(\frac{\pi}{e}n!\right).$
  2. $\displaystyle u_n=\frac{(-1)^{\lfloor \sqrt{n} \rfloor }}{n^\alpha}$, pour $\alpha\in\mtr.$
Indication
Corrigé
Comparaison à une intégrale
Exercice 27 - Somme partielle des séries de Riemann [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $\alpha\in\mathbb R$.
  1. Pour $\alpha<1$, déterminer un équivalent de $S_n=\sum_{k=1}^n \frac{1}{k^\alpha}$.
  2. Pour $\alpha=1$, déterminer un équivalent de $S_n=\sum_{k=1}^n \frac{1}{k^\alpha}$.
Indication
Corrigé
Exercice 28 - Reste d'une série de Riemann [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $\alpha>1$. On note $$R_n=\sum_{k=n+1}^{+\infty}\frac 1{n^{\alpha}}.$$
  1. Soit $a\in\mathbb R$. Déterminer $$\lim_{x\to+\infty}\int_a^{x}\frac{dt}{t^\alpha}.$$
  2. En déduire un équivalent simple de $R_n$.
Indication
Corrigé
Enoncé
Déterminer un équivalent simple de $\ln(n!)$.
Indication
Corrigé
Enoncé
Suivant la valeur de $\alpha\in\mathbb R$, déterminer la nature de la série $\sum_n u_n$, où $$u_n=\frac{\sqrt 1+\sqrt 2+\dots+\sqrt n}{n^\alpha}.$$
Indication
Corrigé
Enoncé
On souhaite étudier, suivant la valeur de $\alpha,\beta\in\mathbb R$, la convergence de la série de terme général $$u_n=\frac{1}{n^\alpha(\ln n)^\beta}.$$
  1. Démontrer que la série converge si $\alpha>1$.
  2. Traiter le cas $\alpha<1$.
  3. On suppose que $\alpha=1$. On pose $T_n=\int_2^n \frac{dx}{x(\ln x)^\beta}$.
    1. Montrer si $\beta\leq 0$, alors la série de terme général $u_n$ est divergente.
    2. Montrer que si $\beta>1$, alors la suite $(T_n)$ est bornée, alors que si $\beta\leq 1$, la suite $(T_n)$ tend vers $+\infty$.
    3. Conclure pour la série de terme général $u_n$, lorsque $\alpha=1$.
Indication
Corrigé
Enoncé
Par comparaison à une intégrale, donner un équivalent de $u_n=\sum_{k=1}^n \ln^2(k)$. La série de terme général $\frac 1{u_n}$ est-elle convergente?
Indication
Corrigé
Enoncé
Déterminer $\displaystyle \lim_{a\to+\infty}\sum_{n=1}^{+\infty}\frac{a}{n^2+a^2}.$
Indication
Corrigé
Calcul de sommes
Enoncé
Montrer que la série de terme général $$u_n=\frac{1}{\sqrt{n-1}}-\frac{2}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}$$ (pour $n\geq 2$) est convergente, et calculer sa somme.
Indication
Corrigé
Exercice 35 - A partir d'une série géométrique [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $x\in ]-1,1[$. Calculer $\displaystyle \sum_{k=0}^{+\infty}kx^k$.
Indication
Corrigé
Exercice 36 - Avec des exponentielles [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Sachant que $e=\sum_{n\geq 0}\frac1{n!}$, déterminer la valeur des sommes suivantes : $$\begin{array}{lllll} \displaystyle \mathbf 1.\ \dis \sum_{n\geq 0}\frac{n+1}{n!}&&\displaystyle \mathbf 2.\ \dis \sum_{n\geq 0}\frac{n^2-2}{n!}&& \displaystyle \mathbf 3.\ \sum_{n\geq 0}\frac{n^3}{n!}. \end{array}$$
Indication
Corrigé
Exercice 37 - Série harmonique alternée [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
  1. En utilisant l'inégalité de Taylor-Lagrange sur la fonction $t\mapsto {\ln(1+t)}$, montrer que la série $\sum_{n\geq 1}\frac{(-1)^{n-1}}{n}$ est convergente et de somme $\ln 2$.
  2. Sachant que $\dis\frac{1}{k}=\int_0^1 t^{k-1}dt$, retrouver d'une autre façon le résultat précédent.
Indication
Corrigé
Exercice 38 - Somme de la série des inverses des carrés [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Le but de l'exercice est de calculer $\sum_{n\geq 1}\frac1{n^2}$.
  1. Soit $f$ une fonction de classe $C^1$ sur $[0,\pi]$. Démontrer que $$\int_0^\pi f(t)\sin\left(\frac{(2n+1)t}{2}\right)dt\longrightarrow_{n\to+\infty}0.$$
  2. On pose $A_n(t)=\frac12+\sum_{k=1}^n \cos(kt).$ Vérifier que, pour $t\in]0,\pi]$, on a $$A_n(t)=\frac{\sin\left((2n+1)t/2\right)}{2\sin(t/2)}.$$
  3. Déterminer deux réels $a$ et $b$ tels que, pour tout $n\geq 1$, $$\int_0^\pi (at^2+bt)\cos(nt)dt=\frac1{n^2}.$$ Vérifier alors que $$\int_0^\pi(at^2+bt)A_n(t)=S_n-\frac{\pi^2}6.$$
  4. Déduire des questions précédentes que $S_n\to \frac{\pi^2}6.$
Indication
Corrigé
Exercice 39 - Élimination imprévue [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Étudier la convergence et calculer la somme de la série de terme général $\dis \arctan\left(\frac{1}{k^2+k+1}\right).$
Indication
Corrigé
Enoncé
Étudier la convergence et calculer la somme de la série de terme général $$u_n=\frac{(-1)^n}{n+(-1)^n}.$$
Indication
Corrigé
Estimation des sommes partielles et du reste
Enoncé
Écrire un algorithme donnant un encadrement à $10^{-5}$ près de $\sum_{n\geq 1}\frac{(-1)^n}{n\ln(n+1)}$.
Indication
Corrigé
Enoncé
Soit pour $n\geq 1$, $u_n=\frac 1{(2n-1)5^{2n-1}}$.
  1. Montrer que la série de terme général $u_n$ converge.
  2. On note $R_n=\sum_{k=n+1}^{+\infty}u_{k}$. Montrer que $R_n\leq \frac{25}{24}u_{n+1}$.
  3. En déduire la valeur de $\sum_{n=1}^{+\infty} u_n$ à 0,001 près.
Indication
Corrigé
Exercice 43 - Développement asymptotique de la série harmonique [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On pose $H_n=1+\frac12+\dots+\frac1n$.
  1. Prouver que $H_n\sim_{+\infty}\ln n$.
  2. On pose $u_n=H_n-\ln n$, et $v_n=u_{n+1}-u_n$. Étudier la nature de la série $\sum_n v_n$. En déduire que la suite $(u_n)$ est convergente. On notera $\gamma$ sa limite.
  3. Soit $R_n=\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$. Donner un équivalent de $R_n$.
  4. Soit $w_n$ tel que $H_n=\ln n+\gamma+w_n$, et soit $t_n=w_{n+1}-w_n$. Donner un équivalent du reste $\sum_{k\geq n}t_k$. En déduire que $H_n=\ln n+\gamma+\frac{1}{2n}+o\left(\frac1n\right)$.
Indication
Corrigé
Exercice 44 - Somme et développement asymptotique de la série des inverses des carrés [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Le but de l'exercice est de calculer $\sum_{n\geq 1}\frac1{n^2}$ et de donner un développement asymptotique de la somme partielle $S_n=\sum_{k=1}^n \frac1{k^2}.$
    1. Soit $\alpha>1$ et $k\geq 2$. Démontrer que $$\int_{k}^{k+1}\frac{dt}{t^\alpha}\leq \frac1{k^\alpha}\leq \int_{k-1}^{k}\frac{dt}{t^\alpha}.$$
    2. En déduire que $$\sum_{k\geq n}\frac{1}{k^{\alpha}}\sim_{+\infty}\frac{1}{(\alpha-1)n^{\alpha-1}}.$$
  1. Soit $f$ une fonction de classe $C^1$ sur $[0,\pi]$. Démontrer que $$\int_0^\pi f(t)\sin\left(\frac{(2n+1)t}{2}\right)dt\longrightarrow_{n\to+\infty}0.$$
  2. On pose $A_n(t)=\frac12+\sum_{k=1}^n \cos(kt).$ Vérifier que, pour $t\in]0,\pi]$, on a $$A_n(t)=\frac{\sin\left((2n+1)t/2\right)}{2\sin(t/2)}.$$
  3. Déterminer deux réels $a$ et $b$ tels que, pour tout $n\geq 1$, $$\int_0^\pi (at^2+bt)\cos(nt)dt=\frac1{n^2}.$$ Vérifier alors que $$\int_0^\pi(at^2+bt)A_n(t)dt=S_n-\frac{\pi^2}6.$$
  4. Déduire des questions précédentes que $S_n\to \frac{\pi^2}6.$
  5. Déduire des questions précédentes que $$S_n=\frac{\pi^2}6-\frac1n+o\left(\frac 1n\right).$$
Indication
Corrigé
Exercice 45 - Reste d'une série alternée [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Le but de l'exercice est de déterminer un équivalent du reste de certaines séries alternées. On considère $(u_n)_{n\geq 0}$ une suite de réels positifs décroissant vers $0$, et on considère la série $\sum_{n\geq 0}(-1)^n u_n$ dont on rappelle qu'elle est convergente. On note $R_n=\sum_{k=n+1}^{+\infty}(-1)^k u_k$ son reste. On suppose de plus que la suite $(u_n)$ vérifie les deux conditions suivantes : $$\forall n\geq0,\ u_{n+2}-2u_{n+1}+u_n\geq 0\qquad\textrm{et}\qquad \lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=0.$$
  1. Démontrer que pour tout $n\geq 0$, $|R_n|+|R_{n+1}|=u_{n+1}$.
  2. Démontrer que la suite $(|R_n|)$ est décroissante.
  3. En déduire que $R_n\sim_{+\infty}\frac{(-1)^{n+1} u_n}2.$
Indication
Corrigé
Produit de Cauchy et permutation des termes
Exercice 46 - Somme d'une série et produit de Cauchy [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $(a,b)\in\mathbb C^2$ tels que $|a|<1$ et $|b|<1$. Prouver que $$\left\{ \begin{array}{rcll} \displaystyle \frac{1}{(1-a)(1-b)}&=&\displaystyle\sum_{n=0}^{+\infty}\frac{a^{n+1}-b^{n+1}}{a-b}&\textrm{ si }a\neq b, \\ \displaystyle\frac{1}{(1-a)^2}&=&\displaystyle\sum_{n=0}^{+\infty}{(n+1)a^n}&\textrm{ si }a=b. \end{array}\right.$$
Indication
Corrigé
Exercice 47 - Somme d'une série par produit de Cauchy [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour $n\geq 0$, on pose $w_n=2^{-n}\sum_{k=0}^n \frac{4^k}{k!}$.
  1. Montrer que la série de terme général $w_n$ converge.
  2. Calculer sa somme en utilisant le produit d'une série géométrique par une autre série classique.
Indication
Corrigé
Exercice 48 - Séries semi-convergentes et produit de Cauchy [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit, pour $n\geq 0$, $u_n=\frac{(-1)^n}{\sqrt{n+1}}$.
  1. Vérifier que $\sum_n u_n$ est semi-convergente.
  2. Montrer que le produit de Cauchy de $\sum u_n$ par $\sum u_n$ ne converge pas.
  3. Soit $\sigma:\mathbb N\to\mathbb N$ définie par $\sigma(3p)=2p$, $\sigma(3p+1)=4p+1$, $\sigma(3p+2)=4p+3$. Vérifier que $\sigma$ est une permutation de $\mathbb N$. Que peut-on dire de la série $\sum_n u_{\sigma(n)}$?
Indication
Corrigé
Applications
Enoncé
  1. Soit $(x_n)$ une suite de réels et soit $(y_n)$ définie par $y_n=x_{n+1}-x_n$. Démontrer que la série $\sum_n y_n$ et la suite $(x_n)$ sont de même nature.
  2. On pose $(u_n)$ la suite définie par $\dis u_n=\frac{n^ne^{-n}\sqrt{n}}{n!}$. Donner la nature de la série de terme général $\dis v_n=\ln\left(\frac{u_{n+1}}{u_n}\right)$.
  3. En déduire l'existence d'une constante $C>0$ telle que : $$n!\sim_{+\infty} C\sqrt{n}n^ne^{-n}.$$
Indication
Corrigé
Enoncé
Soit $(u_n )$ une suite de réels strictement positifs telle que $$\frac{{u_{n + 1} }}{{u_n }} = 1 + \frac{\alpha }{n} + O\left( {\frac{1}{{n^2 }}} \right)\text{, avec }\alpha \in \mathbb{R}.$$ On fixe $\beta\in\mathbb R$ et on pose $$v_n=\ln\big((n+1)^\beta u_{n+1}\big)-\ln\big(n^\beta u_n\big).$$
  1. Pour quel(s) $\beta \in \mathbb{R}$ y a-t-il convergence de la série de terme général $v_n$?
  2. En déduire qu'il existe $A \in \mathbb{R}^{ + \star} $ pour lequel $u_n \sim_{+\infty} An^\alpha.$
Indication
Corrigé
Exercice 51 - Estimation asymptotique d'un produit [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $P_n=\prod_{k=2}^n \left(1+\frac{(-1)^k}{\sqrt k}\right)$. Démontrer qu'il existe $\lambda\in\mathbb R$ tel que $P_n\sim_{+\infty}\frac{e^\lambda}n$.
Indication
Corrigé
Exercice 52 - Étude d'une suite récurrente [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(u_n)$ une suite réelle telle que $u_0\in]0,\pi[$ et $u_{n+1}=\sin u_n$, pour $n\geq 0$.
  1. Etudier la convergence de $(u_n)$.
  2. Montrer que $u_{n+1}/u_n$ tend vers 1. Calculer la limite de $\frac{u_n+u_{n+1}}{u_n}$.
  3. Montrer que $\frac{u_n-u_{n+1}}{u_n^3}$ tend vers 1/6.
  4. En déduire que $\frac{1}{u_{n+1}^2}-\frac{1}{u_n^2}$ tend vers 1/3.
  5. Montrer que l'on a $\lim(\sqrt{n}u_n)=\sqrt{3}.$
Indication
Corrigé
Enoncé
On rappelle que $\cos(1)$ est défini par la série $\cos(1)=\sum_{k=0}^{+\infty}\frac{(-1)^k}{(2k)!}$. Montrer que $\cos(1)$ est irrationnel.
Indication
Corrigé
Pour master MEEF
Enoncé
Proposer un énoncé d'exercice, au niveau Terminale S, prouvant la convergence de la suite $(K_n)_{n\geq 1}$ définie par $\displaystyle K_n=\sum_{k=1}^n\frac 1{k^2}.$
Indication
Corrigé
Exercice 55 - Sur le développement décimal d'un réel [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On rappelle que si $x$ est un réel positif, on appelle développement décimal propre de $x$ la donnée d'un entier $m$ et d'une suite $(a_n)_{n\geq 1}$ d'entiers de $\{0,\dots,9\}$, non stationnaire à $9$, tels que $$x=m+\sum_{n=1}^{+\infty}\frac{a_n}{10^n}.$$ On rappelle que tout réel positif admet un unique développement décimal propre, et qu'on écrit alors $x=m,a_1a_2a_3\dots$.
  1. Quel est le réel dont le développement décimal propre est $m=0$, et $a_n=5$ pour tout $n\geq 1$? Celui dont le développement décimal propre est $m=12$ et $(a_n)$ est donnée par $a_{3n+1}=2$, $a_{3n+2}=3$,$a_{3n+3}=1$, pour tout $n\geq 0$?
  2. Déterminer le développement décimal propre de $4/7$.
  3. Donner une condition nécessaire et suffisante, portant sur son développement décimal propre, pour qu'un réel positif soit décimal.
  4. Soit $x\in ]0,1[$ admettant un développement décimal périodique, c'est-à-dire qu'il existe $n_0\geq 1$ et $p\geq 1$ tel que, pour tout $n\geq n_0$, $a_{n+p}=a_n$. On souhaite démontrer que $x$ est rationnel.
    1. On note $$y=a_{n_0}+\frac{a_{n_0+1}}{10}+\dots+\frac{a_{n_0+p-1}}{10^{p-1}}.$$ Démontrer qu'il existe un rationnel $r$ tel que $$x=r+\frac{y}{10^{n_0}}\times\sum_{l=0}^{+\infty}\frac{1}{10^{lp}}.$$
    2. Conclure.
  5. Réciproquement, soit $x\in ]0,1[\cap\mathbb Q$. On écrit $x=a/b$ avec $a,b$ des entiers naturels.
    1. Démontrer qu'il existe $0\leq s<t$ tels que $10^s a$ et $10^t a$ ont même reste dans la division euclidienne par $b$.
    2. En déduire que $\frac{10^s a}{b}-\frac{10^t a}{b}$ est un entier.
    3. On note $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ et $(c_n)_{n\geq 1}$ les parties fractionnaires des développements décimaux propres de, respectivement, $\frac ab$, $\frac{10^s a}{b}$ et $\frac{10^t a}{b}$. Exprimer les suites $(b_n)$ et $(c_n)$ en fonction de la suite $(a_n)$, puis donner une relation entre les suites $(b_n)$ et $(c_n)$.
    4. En déduire que $(a_n)$ est périodique.
  6. Démontrer que les nombres décimaux sont denses dans l'ensemble des nombres réels.
  7. En déduire que les nombres rationnels sont denses dans l'ensemble des nombres réels.
  8. Les nombres irrationnels sont-ils denses dans l'ensemble des nombres réels? On pourra utiliser que si $q$ est un rationnel non nul, alors $\sqrt 2 q$ est un irrationnel.
Corrigé