$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Exercices corrigés - Équations différentielles linéaires du second ordre - résolution, applications

Équations du second ordre à coefficients constants
Exercice 1 - Équations du second ordre à coefficients constants [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Résoudre les équations différentielles suivantes :
  1. $y''-2y'+y=x$, $y(0)=y'(0)=0$;
  2. $y''+9y=x+1$, $y(0)=0$;
  3. $y''-2y'+y=\sin^2 x$;
Corrigé
Exercice 2 - Équations du second ordre à coefficients constants [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Résoudre les équations différentielles suivantes :
  1. $y''-4y'+3y=(2x+1)e^{-x}$;
  2. $y''-4y'+3y=(2x+1)e^x$;
  3. $y''-2y'+y=(x^2+1)e^x+e^{3x}$;
  4. $y''-4y'+3y=x^2e^x+xe^{2x}\cos x$;
  5. $y''-2y'+5y=-4xe^{-x}\cos(x)+7e^{-x}\sin x-4e^x\sin(2x)$;
Indication
Corrigé
Enoncé
Déterminer une équation différentielle vérifiée par la famille de fonctions $$y(x)=C_1e^{2x}+C_2e^{-x},\ C_1,C_2\in\mathbb R.$$
Indication
Corrigé
Exercice 4 - Avec une condition initiale [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour les équations différentielles suivantes, déterminer l'unique fonction solution :
  1. $y''+2y'+4y=xe^x$, avec $y(0)=1$ et $y(1)=0$.
  2. $y''-2y'+(1+m^2)y=(1+4m^2)\cos (mx)$ avec $y(0)=1$ et $y'(0)=0$; on discutera suivant que $m=0$ ou $m\neq 0$.
Indication
Corrigé
Exercice 5 - Changement de variables [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On cherche à résoudre sur $\mathbb R_+^*$ l’équation différentielle : $$x²y"−3xy'+4y = 0.\ (E)$$
  1. Cette équation est-elle linéaire ? Qu’est-ce qui change par rapport au cours ?
  2. Analyse. Soit $y$ une solution de $(E)$ sur $\mathbb R_+^*$. Pour $t\in\mathbb R$, on pose $z(t)=y(e^t)$.
    1. Calculer pour $t\in\mathbb R$, $z'(t)$ et $z''(t)$.
    2. En déduire que $z$ vérifie une équation différentielle linéaire d’ordre 2 à coefficients constants que l’on précisera (on pourra poser $x = e^t$ dans $(E)$).
    3. Résoudre l’équation différentielle trouvée à la question précédente.
    4. En déduire le ”portrait robot” de $y$.
  3. Synthèse. Vérifier que, réciproquement, les fonctions trouvées à la fin de l’analyse sont bien toutes les solutions de (E) et conclure.
Indication
Corrigé
Exercice 6 - Changement de fonction inconnue - et on retrouve des coefficients constants... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Résoudre sur $\mathbb R$ les équations différentielles suivantes :
  1. $(1+e^x)y''+2e^x y'+(2e^x+1)y=xe^x$ en posant $z(x)=(1+e^x)y(x)$;
  2. $xy''+2(x+1)y'+(x+2)y=0$, en posant $z=xy$.
Indication
Corrigé
Exercice 7 - Changement de variable - et on retrouve des coefficients constants... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Résoudre les équations différentielles suivantes :
  1. $y''-y'-e^{2x}y=e^{3x}$ en posant $t=e^x$;
  2. $y''+y'\tan(x)-y\cos^2(x)=0$ en posant $t=\sin x$;
  3. $x^2y''+y=0$ en posant $t=\ln x$;
  4. $(1-x^2)y''-xy'+y=0$ sur $]-1,1[$.
Indication
Corrigé
Exercice 8 - Varions la constante... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Résoudre l'équation différentielle $y''+4y=\tan t$.
Indication
Corrigé
Équations du second ordre à coefficients non constants
Exercice 9 - Solutions polynômiales [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Rechercher les fonctions polynômes solutions de $$(x^2-3)y''-4xy'+6y=0.$$ En déduire toutes les solutions de cette équation sur $\mathbb R$.
Indication
Corrigé
Exercice 10 - Abaissement de l'ordre [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On considère l'équation différentielle notée $(E)$ : $$(t^2+t)x''+(t-1)x'-x=0.$$
  1. Déterminer les solutions polynômiales de $(E)$.
  2. En déduire toutes les solutions de $(E)$ sur $]1,+\infty[$.
  3. Reprendre le même exercice avec $$x^2y''-3xy'+4y=x^3$$ dont on déterminera les solutions sur $]0,+\infty[$. On cherchera d'abord les solutions polynômiales de l'équation homogène!
Indication
Corrigé
Exercice 11 - Avec des séries entières [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On considère l'équation différentielle $$xy''-y'+4x^3 y=0\quad\quad (E)$$ dont on se propose de déterminer les solutions sur $\mathbb R$.
  1. Question préliminaire : soient $a,b,c,d$ 4 réels et $f:\mathbb R^*\to\mathbb R$ définie par $$f(x)=\left\{\begin{array}{ll} a\cos(x^2)+b\sin(x^2)&\textrm{ si }x>0\\ c\cos(x^2)+d\sin(x^2)&\textrm{ si }x<0 \end{array}\right. $$ A quelle condition sur $a,b,c,d$ la fonction $f$ se prolonge-t-elle en une fonction de classe $C^2$ sur $\mathbb R$?
    On recherche les solutions de $(E)$ qui sont développables en série entière au voisinage de 0. On note $x\mapsto \sum_{n=0}^{+\infty}a_n x^n$ une telle solution, lorsqu'elle existe, et on désigne par $R$ son rayon de convergence.
  2. Montrer qu'il existe une relation de récurrence, que l'on explicitera, entre $a_{n+4}$ et $a_n$.
  3. Pour $p\in\mathbb N$, déterminer $a_{4p+1}$ et $a_{4p+3}$.
  4. Pour $p\in\mathbb N$, déterminer $a_{4p}$ en fonction de $a_0$ et de $p$ (respectivement $a_{4p+2}$ en fonction de $a_2$ et $p$).
  5. Quel est le rayon de la série entière obtenue? Exprimer la comme combinaison linéaire de deux fonctions "classiques".
  6. Soit $S$ le $\mathbb R$-espace vectoriel des applications de $\mathbb R$ dans $\mathbb R$ qui sont solutions de $(E)$ sur $\mathbb R$. Préciser une base de $S$.
Indication
Corrigé
Exercice 12 - Raccordement de solutions - dimensions possibles [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
$a$ et $b$ étant deux fonctions continues sur $\mathbb R$, on considère $(E)$ l'équation différentielle $$x^2y''+a(x)y'+b(x)y=0.$$ On note $S^+$ l'espace vectoriel des fonctions de classe $C^2$ solutions de $(E)$ sur l'intervalle $I=]0,+\infty[$ et $S^-$ l'espace vectoriel des fonctions de classe $C^2$ solutions de $(E)$ sur l'intervalle $J=]-\infty,0[$, et on note $S$ l'espace vectoriel des fonctions de classe $C^2$ solutions de $(E)$ sur $\mathbb R$ tout entier. L'objectif de l'exercice est d'étudier les valeurs possibles pour la dimension de $S$.
  1. Rappeler la dimension de $S^+$ et de $S^-$.
  2. On note $\varphi$ l'application linéaire de $S$ vers $S^+\times S^-$ définie par $\varphi(f)=(f_{|I},f_{|J})$. Donner le noyau de $\varphi$. En déduire que $\dim S\leq 4$.
  3. Dans cette question, on suppose que $a(x)=x$ et que $b(x)=0$, d'où $(E)$ est l'équation $x^2y''+xy'=0$. Déterminer $S^+$ et $S^-$. En déduire ensuite $S$ et sa dimension.
  4. Dans cette question, $(E)$ est l'équation $x^2y''-6xy'+12y=0$. Déterminer deux solutions sur $I$ de la forme $x\mapsto x^\alpha$ ($\alpha$ réel). En déduire $S^+$ puis $S^-$. En déduire $S$ et sa dimension.
  5. En s'inspirant de la question précédente, donner un exemple d'équation différentielle du type $x^2y''+a(x)y'+b(x)y=0$ tel que $\dim S=0$.
Indication
Corrigé
Exercice 13 - Solutions DSE puis abaissement de l'ordre [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Pour les équations différentielles suivantes :
  • Chercher les solutions développables en séries entières
  • Résoudre complètement l'équation sur un intervalle bien choisi par la méthode d'abaissement de l'ordre
  • Résoudre l'équation sur $\mathbb R$.
$$\mathbf{1.} \ xy''+2y'-xy=0\quad\quad \mathbf{2.} \ x(x-1)y''+3xy'+y=0.$$
Indication
Corrigé
Exercice 14 - DSE, changement de variables, raccordement [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $(E)$ l'équation différentielle $$2xy''-y'+2xy=0.$$
  1. Trouver les solutions développables en série entière en 0. On les exprimera à l'aide de fonctions classiques.
  2. A l'aide d'un changement de variables, résoudre l'équation différentielle sur $\mathbb R_+^*$ et $\mathbb R_-^*$.
  3. En déduire toutes les solutions sur $\mathbb R$.
Indication
Corrigé
Exercice 15 - Séries de Fourier et équations différentielles [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit l'équation différentielle $y''+ye^{it}=0$. Montrer qu'elle admet des solutions $2\pi-$périodiques. Les déterminer.
Indication
Corrigé
Exercice 16 - Avec de l'algèbre linéaire [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ le $\mathbb C$-espace vectoriel des applications de classe $C^\infty$ de $\mathbb R$ dans $\mathbb C$. On définit $\phi:E\to E$ par \begin{eqnarray*} \phi(f):\mathbb R&\to&\mathbb R\\ t&\mapsto& f'(t)+tf(t). \end{eqnarray*}
  1. Déterminer les valeurs propres et les vecteurs propres de $\phi$.
  2. Faire de même pour $\phi^2$.
  3. En déduire les solutions de l'équation différentielle $$y''+2xy'+(x^2+3)y=0.$$
Indication
Corrigé
Enoncé
Déterminer une équation différentielle linéaire homogène du second ordre admettant pour solutions les fonctions $\phi_1$ et $\phi_2$ définies respectivement par $\phi_1(x)=e^{x^2}$ et $\phi_2(x)=e^{-x^2}$.
Indication
Corrigé
Applications
Exercice 18 - Presqu'une équation différentielle... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $\lambda\in\mathbb R$. Trouver toutes les applications $f$ de classe $C^1$ sur $\mathbb R$ telles que, pour tout $x$ de $\mathbb R$, on a $$f'(x)=f(\lambda-x).$$
Indication
Corrigé
Exercice 19 - Presqu'une équation différentielle [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Déterminer les fonction $f:\mathbb R\to \mathbb R$ de classe $C^1$ et vérifiant pour tout $x\in\mathbb R$, $$f'(x)+f(-x)=e^x.$$
Indication
Corrigé
Exercice 20 - Presque qu'une équation différentielle... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On cherche à déterminer les fonctions $f:]0,+\infty[\to\mathbb R$ dérivables telles que, pour tout $t>0$, $$f'(t)=-f\left(\frac 1t\right).$$
  1. Démontrer qu'une telle fonction est deux fois dérivable, puis que $f$ est solution de l'équation différentielle $$t^2y''-y=0\quad\quad(E).$$
  2. Soit $y$ une solution de $(E)$. On pose, pour $x\in\mathbb R$, $z(x)=y(e^x)$. Démontrer que $z$ est solution d'une équation différentielle linéaire du second ordre à coefficients constants. Résoudre cette équation.
  3. Répondre au problème posé.
Corrigé
Master Meef
Enoncé
Résoudre l'équation $x^2y''+xy'=0$ sur l'intervalle $]0,+\infty[$. Voici la réponse d'un étudiant. Qu'en pensez-vous?
L'équation caractéristique est $x^2r^2+xr=0$ dont les solutions sont $r=0$ et $r=-1/x$. Les solutions de l'équation sont $y(x)=A+B\exp(-1/x)$.
Corrigé