$$\newcommand{\mtn}{\mathbb{N}}\newcommand{\mtns}{\mathbb{N}^*}\newcommand{\mtz}{\mathbb{Z}}\newcommand{\mtr}{\mathbb{R}}\newcommand{\mtk}{\mathbb{K}}\newcommand{\mtq}{\mathbb{Q}}\newcommand{\mtc}{\mathbb{C}}\newcommand{\mch}{\mathcal{H}}\newcommand{\mcp}{\mathcal{P}}\newcommand{\mcb}{\mathcal{B}}\newcommand{\mcl}{\mathcal{L}} \newcommand{\mcm}{\mathcal{M}}\newcommand{\mcc}{\mathcal{C}} \newcommand{\mcmn}{\mathcal{M}}\newcommand{\mcmnr}{\mathcal{M}_n(\mtr)} \newcommand{\mcmnk}{\mathcal{M}_n(\mtk)}\newcommand{\mcsn}{\mathcal{S}_n} \newcommand{\mcs}{\mathcal{S}}\newcommand{\mcd}{\mathcal{D}} \newcommand{\mcsns}{\mathcal{S}_n^{++}}\newcommand{\glnk}{GL_n(\mtk)} \newcommand{\mnr}{\mathcal{M}_n(\mtr)}\DeclareMathOperator{\ch}{ch} \DeclareMathOperator{\sh}{sh}\DeclareMathOperator{\th}{th} \DeclareMathOperator{\vect}{vect}\DeclareMathOperator{\card}{card} \DeclareMathOperator{\comat}{comat}\DeclareMathOperator{\imv}{Im} \DeclareMathOperator{\rang}{rg}\DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\diam}{diam}\DeclareMathOperator{\supp}{supp} \newcommand{\veps}{\varepsilon}\newcommand{\mcu}{\mathcal{U}} \newcommand{\mcun}{\mcu_n}\newcommand{\dis}{\displaystyle} \newcommand{\croouv}{[\![}\newcommand{\crofer}{]\!]} \newcommand{\rab}{\mathcal{R}(a,b)}\newcommand{\pss}[2]{\langle #1,#2\rangle} $$
Bibm@th

Exercices corrigés - Espaces vectoriels : sous-espaces vectoriels

Théorie générale
Exercice 1 - Est-ce un sous-espace vectoriel? [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Parmi les ensembles suivants, lesquels sont, ou ne sont pas, des sous-espaces vectoriels?
  1. $E_1=\{(x,y,z)\in\mathbb R^3;\ x+y+3z=0\}$;
  2. $E_2=\{(x,y,z)\in\mathbb R^3;\ x+y+3z=2\}$;
  3. $E_3=\{(x,y,z,t)\in\mathbb R^4;\ x=y=2z=4t\}$;
  4. $E_4=\{(x,y)\in\mathbb R^2;\ xy=0\}$;
  5. $E_5=\{(x,y)\in\mathbb R^2;\ y=x^2\}$;
  6. $E_6=\{(x,y,z)\in\mathbb R^3;\ 2x+3y-5z=0\}\cap\{(x,y,z)\in\mathbb R^3;\ x-y+z=0\}$;
  7. $E_7=\{(x,y,z)\in\mathbb R^3;\ 2x+3y-5z=0\}\cup\{(x,y,z)\in\mathbb R^3;\ x-y+z=0\}$.
Indication
Corrigé
Exercice 2 - Est-ce un sous-espace vectoriel (bis)? [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Déterminer si les ensembles suivants sont ou ne sont pas des sous-espaces vectoriels :
  1. $E_1=\{P\in\mathbb R[X];\ P(0)=P(2)\}$;
  2. $E_2=\{P\in\mathbb R[X];\ P'(0)=2\}$;
  3. Pour $A\in\mathbb R[X]$ non-nul fixé, $E_3=\{P\in\mathbb R[X]; A|P\}$;
  4. $\mathcal D$ l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$ qui sont dérivables;
  5. $E_4$, l'ensemble des solutions de l'équation différentielle $y'+a(x) y=0$, où $a\in\mathcal D$.
  6. $E_5$, l'ensemble des solutions de l'équation différentielle $y'+a(x) y=x$, où $a\in\mathcal D$.
Indication
Corrigé
Exercice 3 - Est-ce un sous-espace vectoriel? [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$. Dire dans les cas suivants si la partie $V$ de $E$ est un sous-espace vectoriel de $E$.
  1. $V$ est l'ensemble des fonctions bornées.
  2. $V$ est l'ensemble des fonctions majorées.
  3. $V$ est l'ensemble des fonctions paires.
  4. $V$ est l'ensemble des fonctions paires ou impaires.
Indication
Corrigé
Exercice 4 - Réunion de deux sous-espaces vectoriels [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel et soient $F$ et $G$ deux sous-espaces vectoriels de $E$. Montrer que $F\cup G$ est encore un sous-espace vectoriel de $E$ si et seulement si $F\subset G$ ou $G\subset F$.
Indication
Corrigé
Sous-espace vectoriel engendré
Exercice 5 - D'un système générateurs à un système d'équations... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Donner un système d'équations des espaces vectoriels engendrés par les vecteurs suivants :
  1. $u_1=(1,2,3)$;
  2. $u_1=(1,2,3)$ et $u_2=(-1,0,1)$;
  3. $u_1=(1,2,0)$, $u_2=(2,1,0)$ et $u_3=(1,0,1)$.
Indication
Corrigé
Exercice 6 - D'un système d'équations à un système générateurs... [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Trouver un système générateur des sous-espaces vectoriels suivants de $\mathbb R^3$:
  1. $F=\{(x,y,z)\in\mathbb R^3;\ x+2y-z=0\}$;
  2. $G=\{(x,y,z)\in\mathbb R^3;\ x-y+z=0\textrm{ et }2x-y-z=0\}$.
Indication
Corrigé
Exercice 7 - Coïncidence de sous-espaces [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Dans les exemples suivants, démontrer que les sous-espaces $F$ et $G$ de $E$ sont égaux.
  1. $E=\mathbb R^3$, $u_1=(1,1,3)$, $u_2=(1,-1,-1)$, $v_1=(1,0,1)$, $v_2=(2,-1,0)$, $F=\textrm{vect}(u_1,u_2)$ et $G=\textrm{vect}(v_1,v_2)$.
  2. $E=\mathbb R^3$, $F=\textrm{vect}\big((2,3,-1),(1,-1,-2)\big)$ et $G=\textrm{vect}\big((3,7,0),(5,0,-7)\big)$.
  3. $E=\mathbb R^3$, $F=\{(x,y,z)\in\mathbb R^3;\ x+y+z=0\}$, $u_1=(1,1,-2)$, $u_2=(1,-4,3)$ et $G=\textrm{vect}(u_1,u_2)$.
  4. $E=\mathbb R^4$, $$F=\{(x,y,z,t)\in\mathbb R^4;\ x+y+z+t=0\textrm{ et }x-y+2z-2t=0\}$$ $$G=\{(x,y,z,t)\in\mathbb R^4;\ 5x+y+7z-t=0\textrm{ et }x-3y+3z-5t=0\}.$$
Corrigé
Sous-espaces supplémentaires
Exercice 8 - Où sont les supplémentaires? [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
On considère dans $\mathbb R^4$ les cinq vecteurs suivants : $v_1=(1,0,0,1)$, $v_2=(0,0,1,0)$, $v_3=(0,1,0,0)$, $v_4=(0,0,0,1)$ et $v_5=(0,1,0,1)$. Dire si les sous-espaces vectoriels suivants sont supplémentaires dans $\mathbb R^4$.
  1. $\textrm{vect}(v_1,v_2)$ et $\textrm{vect}(v_3)$?
  2. $\textrm{vect}(v_1,v_2)$ et $\textrm{vect}(v_4,v_5)$?
  3. $\textrm{vect}(v_1,v_3,v_4)$ et $\textrm{vect}(v_2,v_5)$?
  4. $\textrm{vect}(v_1,v_4)$ et $\textrm{vect}(v_3,v_5)$?
Indication
Corrigé
Exercice 9 - Par deux, mais par trois? [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathbb R^4$. On considère $(u_1,u_2,u_3,u_4)$ une famille libre de $E$ et on pose $$F=\textrm{vect}(u_1+u_2,u_3),\ G=\textrm{vect}(u_1+u_3,u_4), H=\textrm{vect}(u_1+u_4,u_2).$$ Démontrer que $F\cap G=\{0\}$, que $F\cap H=\{0\}$ et que $G\cap H=\{0\}$. La somme $F+G+H$ est-elle directe?
Indication
Corrigé
Exercice 10 - Périodiques et tend vers 0 à l'infini [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$, $F$ le sous-espace vectoriel des fonctions périodiques de période 1 et $G$ le sous-espace vectoriel des fonctions $f$ telles que $\lim_{+\infty}f=0$. Démontrer que $F\cap G=\{0\}$. Est-ce que $F$ et $G$ sont supplémentaires?
Indication
Corrigé
Enoncé
Soit $E$ l'espace vectoriel des suites réelles, $$F=\{(u_n)\in E;\ \forall n\in\mathbb N,\ u_{2n}=0\}$$ $$G=\{(u_n)\in E;\ \forall n\in\mathbb N,\ u_{2n}=u_{2n+1}\}.$$ Démontrer que $F$ et $G$ sont supplémentaires.
Corrigé
Exercice 12 - Trouver un supplémentaire! [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $A\in\mathbb R[X]$ un polynôme non-nul et $F=\{P\in\mathbb R[X];\ A\textrm{ divise }P\}$. Montrer que $F$ est un sous-espace vectoriel de $\mathbb R[X]$ et trouver un supplémentaire à $F$.
Indication
Corrigé
Exercice 13 - Transformer une somme en somme directe [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $F$ et $G$ deux sous-espaces vectoriels d'un espace vectoriel $E$ tels que $F+G=E$. Soit $F'$ un supplémentaire de $F\cap G$ dans $F$. Montrer que $F'\oplus G=E$.
Corrigé
Exercice 14 - Caractérisation de la somme [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soient $E$ un espace vectoriel et $F,G,H$ trois sous-espaces vectoriels de $E$. Démontrer que $F$, $G$ et $H$ sont en somme directe si et seulement si ($F\cap G=\{0\}$ et $(F+G)\cap H=\{0\}$).
Corrigé
Exercice 15 - Fonctions paires / Fonctions impaires [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E=\mathcal F(\mathbb R,\mathbb R)$ l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$. On note $F$ le sous-espace vectoriel des fonctions paires (ie $f(-x)=f(x)$ pour tout $x\in\mathbb R$) et $G$ le sous-espace vectoriel des fonctions impaires (ie $f(-x)=-f(x)$ pour tout $x\in\mathbb R$). Montrer que $F$ et $G$ sont supplémentaires.
Indication
Corrigé
Exercice 16 - Un supplémentaire n'est jamais unique [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ un espace vectoriel dans lequel tout sous-espace vectoriel admet un supplémentaire. Soit $F$ un sous-espace vectoriel propre de $F$ (c'est-à-dire que $F\neq \{0\}$ et que $F\neq E$). Démontrer que $F$ admet au moins deux supplémentaires distincts.
Indication
Corrigé
Exercice 17 - Fonctions qui s'annulent en un (plusieurs) point(s) [Signaler une erreur] [Ajouter à ma feuille d'exos]
Enoncé
Soit $E$ l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$.
  1. Soit $a\in\mathbb R$. On désigne par $F$ le sous-espace des fonctions constantes et par $G_a$ le sous-espace des fonctions qui s'annulent en $a$. Montrer que $F$ et $G_a$ sont supplémentaires dans $E$.
  2. Plus généralement, soient $a_0,\dots,a_N$ des éléments distincts de $\mathbb R$ et $G=\{f\in E;\ f(a_0)=\dots=f(a_N)=0\}$. Trouver un supplémentaire à $G$.
Indication
Corrigé