Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 26-02-2021 15:03:36

soupe124
Membre
Inscription : 10-11-2020
Messages : 36

aide sur une question suite d'integrale

Bonjour, j'ai un exercice de math qui est
Soit $u_n=\int_0^1\; x^n \sqrt{1-x}\,\mathrm dx$.
1) Donner une primitive de la fonction $\sqrt{1-x}$
2) En déduire la valeur de $u_0$
3) calculer $u_1$ à l'aide d'une IPP
4) montrer que $u_n= \dfrac{2n(u_{n-1}- u_n)}{3}$
Je bloque sur ma question 4 si vous pourriez m'aider svp  j'ai pensé à une récurrence mais j'ai du mal à débuter l'hérédité.

Dernière modification par yoshi (26-02-2021 15:21:34)

Hors ligne

#2 26-02-2021 15:30:07

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 15 740

Re : aide sur une question suite d'integrale

Bonsoir,

Je n'ai pas assez de temps (ma revue trimestrielle sur les bras et à partir de mercredi prochain je serai absent sans accès Internet jusqu'au dimanche)... Je fais juste une incursion pour :
1. te rappeler de tester Code Latex
2. te signaler que je t'avais répondu à ta demande en janvier, ici http://www.bibmath.net/forums/viewtopic … 213#p91213 post #17
3. te demander de bien vouloir tes réponses pour les 3 premières questions...

Pour ta question 4, la première idée qui me vient à la lecture de l'énoncé est de calculer $u_{n+1}$ connaissant $u_n$ à l'aide d'une IPP (c'est la question 2 qui me fait penser à cela) mais peut-être ai-je tort.... On verra.

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#3 26-02-2021 16:32:02

soupe124
Membre
Inscription : 10-11-2020
Messages : 36

Re : aide sur une question suite d'integrale

Merci pour ta réponse je n'avais pas vu celle de janvier.
Alors question :
1)j'ai trouver -2/3 fois(x-1)^3/2
2) u0=0
3) integrale de x^2/4 racine de 1-x je bloque sur le calcul de cette integrale.

Hors ligne

#4 26-02-2021 18:08:25

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 15 740

Re : aide sur une question suite d'integrale

RE,

J'ai quand même fait l'effort...
1.
$(U^n)'=nU'U^{n-1}$ Ce U n'est pas la suite $(u_n)$ ni un de des éléments
Si je cherche   
$\left((1-x)^{\frac 3 2}\right)'$
j'ai donc $U = 1-x$ donc $U'=-1$  et $n=\frac 3 2$.
Par conséquent :
$\left((1-x)^{\frac 3 2}\right)'=\frac 3 2\times (-1)\times (1-x)^{\frac 1 2}$
Si je veux obtenir comme dérivée $\sqrt{1-x}$
je dois donc dire que sa primitive est
$-\dfrac 2 3 (1-x)^{\frac 3 2}+cste$
Or, toi tu écris :
j'ai trouver -2/3 fois(x-1)^3/2
faute de frappe ?
sinon je ne suis pas d'accord

2. $u_0=\int_0^1\, x^0 \sqrt{1-x}\,\mathrm dx=\int_0^1\,  \sqrt{1-x}\,\mathrm dx$
    soit
   $u_0=-\frac 2 3\left[(1-x)^{\frac 3 2}\right]_0^1=-\frac 2 3\left((1-1)^{\frac 3 2}-(1-0)^{\frac 3 2}\right)=\frac 2 3\times 1^{\frac 3 2}$
Et ça, ça ne fait pas 0, s'pas ?...

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#5 27-02-2021 06:09:01

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

Bonjour,
je me permets cette petite parenthèse : ce qu'a écrit Yoshi est juste, y compris ce qui suit :

yoshi a écrit :

Pour ta question 4, la première idée qui me vient à la lecture de l'énoncé est de calculer $u_{n+1}$ connaissant $u_n$ à l'aide d'une IPP (c'est la question 2 qui me fait penser à cela) mais peut-être ai-je tort.... On verra.
@+

Bonne journée

Hors ligne

#6 27-02-2021 10:10:26

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 15 740

Re : aide sur une question suite d'integrale

Bonjour,


@Zebulor. Merci d'avoir confirmé ce que je pressentais...

@soupe124. (enfin moi, parce que toi, tu continues à ne pas voir cette invitation : Code Latex) :
$u_n= \dfrac{2n(u_{n-1}- u_n)}{3}$
ce qui me dérange (et avec Latex, ça se voit comme le nez au milieu de la figure) c'est la présence de $u_n$de part et d'autre du signe =...
Je n'ai jamais vu de suite définie par récurrence ayant cette caractéristique.
Ce ne serait pas plutôt :
$u_{n+1}= \dfrac{2n(u_{n-1}- u_n)}{3}$ ?

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#7 27-02-2021 11:06:02

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

Salut Yoshi,

yoshi a écrit :

Ce ne serait pas plutôt :
$u_{n+1}= \dfrac{2n(u_{n-1}- u_n)}{3}$ ?

@+

Non .. c'est bien $u_{n}= \dfrac{2n(u_{n-1}- u_n)}{3}$ qui d'ailleurs fonctionne pour $n=1$

Hors ligne

#8 27-02-2021 11:44:35

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 15 740

Re : aide sur une question suite d'integrale

Re,

Ok, merci. Je me coucherai moins bête ce soir...
Donc si j'en crois la formule, pour n=1, on a
$u_1=\dfrac{2\times 1\times(u_0-u_1)}{3}$
$\Leftrightarrow$
$3u_1=2(u_0-u_1)$
$\Leftrightarrow$
$3u_1=2u_0-2u_1$
$\Leftrightarrow$
$3u_1=2u_0-2u_1$
$\Leftrightarrow$
$u_1=\dfrac{2u_0}{5}$ soit $u_1= \dfrac{4}{15}$
ce qui colle avec ce que trouve Wolfram.
Je m'en vais donc devoir encore une fois recalculer l'IPP pour $u_1$ que je vais devoir recommencer : je calcule ce matin comme une vieille chaussette trouée.
Je ne fais que tomber sir un résultat faux...

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#9 27-02-2021 13:26:20

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

re,
pour le fun on peut ajouter une question 5 : en déduire que :$\Large u_n=\frac {2^{2n+1}(n!)^2}{(2n+1)!(2n+3)}$

Dernière modification par Zebulor (27-02-2021 13:32:48)

Hors ligne

#10 27-02-2021 15:03:03

soupe124
Membre
Inscription : 10-11-2020
Messages : 36

Re : aide sur une question suite d'integrale

Re, pour le calcul de u1 je ne tombe que sur des résultats faux , ensuite pour la 4 j'ai reussi finalement avec une IPP . Merci zebulor pour ta question mais je ne vois pas de point d'entrée .

Hors ligne

#11 27-02-2021 15:35:11

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

re,

Ta réponse à la  question 4 te permet d exprimer $u_n$ en fonction de $u_{n-1}$. Connaissant $u_0$ tu peux donc en déduire $u_1$. Yoshi a bien détaillé son calcul..

Pour trouver la relation $\Large u_n=\frac {2^{2n+1}(n!)^2}{(2n+1)!(2n+3)}$ :

1ere méthode:
Tu peux écrire ligne apres ligne $u_n$ en fonction de $u_{n-1}$  en commençant par n=1 pour la 1ere ligne, n=2 pour la deuxième... etc et finir par la (n-unième) ligne puis la n-ième ligne qu'est $u_n=..... $
Ensuite tu multiplies membre à membre ces $n$ lignes et tu simplifies par les termes communs à la multiplication obtenue..

2e méthode : le montrer par récurrence sur $n$ connaissant $u_n$ en fonction de $u_{n-1}$... Peut être un peu technique pour un niveau lycée mais ça se fait en quelques lignes.

Dernière modification par Zebulor (27-02-2021 17:38:55)

Hors ligne

#12 27-02-2021 17:56:02

soupe124
Membre
Inscription : 10-11-2020
Messages : 36

Re : aide sur une question suite d'integrale

J'ai repris la formule de la 4,j'ai isole un+1 en fct de un et ensuite j'ai utilise l'hypothèse de reccurence néanmoins je n'arrive pas à faire apparaitre tout les termes qu'il faut.

Hors ligne

#13 27-02-2021 18:44:04

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

re,
$u_{n+1}$ en fonction de $u_{n}$ ? et que trouves tu ?

Hors ligne

#14 28-02-2021 11:36:17

soupe124
Membre
Inscription : 10-11-2020
Messages : 36

Re : aide sur une question suite d'integrale

re, je trouve Un+1= 2n*Un/3+2n désolé je n'arrive pas à écrire sur latex j'ai besoin d'entrainement.

Hors ligne

#15 28-02-2021 11:59:21

Chlore au quinoa
Membre
Inscription : 06-01-2021
Messages : 286

Re : aide sur une question suite d'integrale

Salut je m'incruste !

Non tu n'as pas besoin "d'entraînement" pour écrire uniquement des fractions sur LaTeX, tu as surtout besoin de lire le document écrit par yoshi, écrire une telle expression te prendra à peine 10 minutes. Le lien est en bas à gauche de chaque message que tu écris, mais au cas où tu aies une très mauvaise vue, je te le mets ici.

Sinon je suis d'accord avec ta relation, et laisse la main à Zebulor !

Bonne journée à vous 2,

Adam


"En mathématiques, on ne comprend pas les choses. On s'y habitue."

J. von Neumann

Hors ligne

#16 28-02-2021 13:26:50

soupe124
Membre
Inscription : 10-11-2020
Messages : 36

Re : aide sur une question suite d'integrale

\frac{2\times{nUn}}{3+2n} je ne comprends pas où est mon erreur?

Hors ligne

#17 28-02-2021 14:13:18

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

rebonjour soupe124,
je suis désolé mais si Chlore au Quinoa peut lire la relation que tu as écrite je n'y arrive pas ...
$u_n= \dfrac{2n(u_{n-1}- u_n)}{3}$ te permet d'exprimer $u_{n}$ en fonction de $u_{n-1}$ .. puis par subsitution d'indice $u_{n+1}$ en fonction de $u_{n}$.
En cliquant sur "Citer" en bas de cette fenêtre tu as le code latex de la formule ci dessus

Dernière modification par Zebulor (28-02-2021 14:19:24)

Hors ligne

#18 28-02-2021 14:19:47

Chlore au quinoa
Membre
Inscription : 06-01-2021
Messages : 286

Re : aide sur une question suite d'integrale

@soupe124

Il faut encadrer avec des dollars "$" tes formules Latex ! Quand j'encadre la tienne cela fait : $\frac{2\times{nUn}}{3+2n}$

Une écriture plus claire serait tout simplement de supprimer le \times qui ne sert pas à grand chose : $\frac{2nu_n}{3+2n}$.

Pour avoir une plus grande fraction (qui prend aussi plus de place), tu peux utiliser \dfrac au lieu de \frac. Cela donne : $\dfrac{2nu_n}{3+2n}$. Dernier conseil purement formel : vu que tu veux mettre en avant le "en fonction de $u_n$", il est plus adéquat de placer le terme devant la fraction comme ceci : \dfrac{2n}{3+2n}u_n ce qui donne : $\dfrac{2n}{3+2n}u_n$

Adam

Dernière modification par Chlore au quinoa (28-02-2021 14:20:17)


"En mathématiques, on ne comprend pas les choses. On s'y habitue."

J. von Neumann

Hors ligne

#19 28-02-2021 14:25:02

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

Merci pour ton aide Chore au Quinoa!

ceci : $\dfrac{2n}{3+2n}u_n$ n'est pas tout à fait $u_{n+1}$

Dernière modification par Zebulor (28-02-2021 14:25:50)

Hors ligne

#20 28-02-2021 14:42:13

Chlore au quinoa
Membre
Inscription : 06-01-2021
Messages : 286

Re : aide sur une question suite d'integrale

Chlore au quinoa a écrit :

Salut je m'incruste !

[...].

Sinon je suis d'accord avec ta relation, et laisse la main à Zebulor !

Bonne journée à vous 2,

Adam

J'ai écrit trop vite et ai fait le même faute que toi en fait ! Ma semaine de vacances ne m'a pas fait que du bien apparemment !

Quand tu changes les indices (les $n$ en $n+1$), pense bien à changer TOUS les termes où la lettre $n$ apparaît !

Merci Zebulor pour ton attention, je m'étais fait prendre...

Adam


"En mathématiques, on ne comprend pas les choses. On s'y habitue."

J. von Neumann

Hors ligne

#21 28-02-2021 16:46:36

soupe124
Membre
Inscription : 10-11-2020
Messages : 36

Re : aide sur une question suite d'integrale

$\frac{(2n+2)\times{Un}}{3+2n}$c'est ça l'expression de un+1 fonction de une bête erreur d'inattention . comment fait on pour indicer sur latex?

Dernière modification par soupe124 (28-02-2021 16:47:58)

Hors ligne

#22 28-02-2021 17:18:42

Chlore au quinoa
Membre
Inscription : 06-01-2021
Messages : 286

Re : aide sur une question suite d'integrale

Avec le tiret du bas _ (celui du 8). u_n donne $u_n$ mais attention : u_n+1 donne $u_n+1$, il faut des accolades pour montrer ce qui est en indice : u_{n+1} donne bien $u_{n+1}$

Adam

P.-S. : attention $3+2(n+1)$ ça fait pas $3n+3$

Edit : Ah j'avais pas vu que tu avais déjà répondu Zebulor, mille excuses !

Dernière modification par Chlore au quinoa (28-02-2021 17:22:15)


"En mathématiques, on ne comprend pas les choses. On s'y habitue."

J. von Neumann

Hors ligne

#23 28-02-2021 17:20:23

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

re,

soupe124 a écrit :

$\frac{(2n+2)\times{Un}}{3+2n}$c'est ça l'expression de un+1 fonction de une bête erreur d'inattention . comment fait on pour indicer sur latex?

Le dénominateur est faux.. il faut mettre le signe _ pour indicer

Hors ligne

#24 28-02-2021 17:29:47

soupe124
Membre
Inscription : 10-11-2020
Messages : 36

Re : aide sur une question suite d'integrale

$\frac{(2n+2)\times{U_n}}{5+2n}$ j'ai oublié de refaire de même sur le dénominateur

Hors ligne

#25 28-02-2021 17:39:53

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 173

Re : aide sur une question suite d'integrale

re,
ensuite le raisonnement par récurrence consiste :
-à vérifier que la formule du post #11 est vraie pour $n=0$ .. voire pour $n=1$ mais la démonstration par récurrence ne l'exige pas.
-à supposer vraie cette formule du post 11 pour un certain nombre $n$ entier naturel.
-à montrer qu'elle est vérifiée au rang $n+1$ en utilisant l'expression de $u_{n+1}$ que tu as trouvée au post 24..
et conclure..

Dernière modification par Zebulor (02-03-2021 10:26:17)

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
trente quatre plus quatre-vingt quatorze
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums