Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 05-12-2020 16:40:04

Super Yoshi
Membre
Inscription : 06-10-2019
Messages : 33

convergence ou divergence d'une intégrale

Bonjour,

je dois étudier la convergence des deux intégrales suivantes :

soit f une fonction continue sur [0,1]. On suppose que f est dérivable en 0 et que f(0)=0

[tex]\int_0^{1} f(t)/t^(3/2)[/tex]   ( c'est puissance 3/2 désolé )

[tex] \int_0^{1} f(t)/t^2 [/tex] on suppose ici que f'(0) != 0

ce qui me pose problème c'est le f(t), est ce qu'il y a un théorème pour cela ?

Hors ligne

#2 05-12-2020 17:06:56

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 842

Re : convergence ou divergence d'une intégrale

Bonjour,

  Je pense que tu dois trouver un équivalent de $f(t)/t^2$ ou $f(t)/t^{3/2}$ en 0, en utilisant la formule de Taylor-Young en 0.

F.

Hors ligne

#3 05-12-2020 17:13:23

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 093

Re : convergence ou divergence d'une intégrale

Bonsoir,
je pensais à une autre idée ; $f$ est bornée sur le segment unité..

Hors ligne

#4 05-12-2020 21:07:35

Super Yoshi
Membre
Inscription : 06-10-2019
Messages : 33

Re : convergence ou divergence d'une intégrale

bonsoir,

je suis désolé mais nous n'avons pas encore appliqué la formule de Taylor-Young en tout cas pour les intégrales généralisés.

@Zebulor segment unité, c'est à dire ?

Dernière modification par Super Yoshi (05-12-2020 22:59:50)

Hors ligne

#5 06-12-2020 07:15:05

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 093

Re : convergence ou divergence d'une intégrale

re,
@Super Yoshi : le segment unité c'est $[0;1]$.
Je me sers de cette seule donnée :

Super Yoshi a écrit :

soit f une fonction continue sur [0,1]

$f$ étant continue sur cet intervalle fermé, j'ai le souvenir d'un théorème -peut être que Fred confirmera ? - selon lequel il existe un réel $B$ tel que [tex]\int_0^{1} \frac{f(t)}{t^{3/2}} dt=B\int_0^{1} \frac{1}{t^{3/2}} dt[/tex].
Si bien que $ \int_0^{1} \frac{f(t)}{t^{3/2}} dt$ et $\int_0^{1} \frac{1}{t^{3/2}}dt $ sont de même nature.

Sinon plus classique : En posant $m=Inf_{[0;1]}f(x)$ et $M=Sup_{[0;1]}f(x)$ tu peux encadrer $ \int_0^{1} \frac{f(t)}{t^{3/2}} dt$ par deux intégrales de même nature.

Je ne vois pas bien en quoi la donnée de $f(0)$ et sa dérivée en $0$ peuvent servir à ce stade de ton exercice..

Dernière modification par Zebulor (06-12-2020 08:09:11)

Hors ligne

#6 06-12-2020 10:01:24

Super Yoshi
Membre
Inscription : 06-10-2019
Messages : 33

Re : convergence ou divergence d'une intégrale

bonjour,

On peut aussi, peut être utiliser le Critère de Riemann en utilisant le faite que f est dérivable en 0, plus précisément avec le taux d'accroissement ? l'intégrale converge ou diverge en fonction de la limite

Dernière modification par Super Yoshi (06-12-2020 10:02:17)

Hors ligne

#7 06-12-2020 10:06:39

Zebulor
Membre
Inscription : 21-10-2018
Messages : 1 093

Re : convergence ou divergence d'une intégrale

re,
c'est le critère de Riemann qui permet de conclure sur la convergence ou non de tes intégrales.. mais pour le moment je ne vois pas le rapport avec la dérivée..

Hors ligne

#8 06-12-2020 19:36:25

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 842

Re : convergence ou divergence d'une intégrale

Super Yoshi a écrit :

bonsoir,

je suis désolé mais nous n'avons pas encore appliqué la formule de Taylor-Young en tout cas pour les intégrales généralisés.

@Zebulor segment unité, c'est à dire ?

Je trouve ta réaction décevante. Tu as forcément fais des dls avant d’étudier les intégrales impropres. Donc tu as forcément déjà vu la formule de Taylor Young. 9 fois sur 10 on prouve la convergence ou la divergence d’une intégrale impropre par majoration par minoration ou en déterminant un équivalent plus simple.

Quel meilleur outil pour obtenir un équivalent que les dls? Et dans un cadre aussi abstrait que celui ci c’est la formule de Taylor Young qui peut te donner un équivalent.

Alors oui tu as peut-être oublié la formule de Taylor Young et ce n’est pas très grave. Mais si je te dis de l’utiliser avec tous les moyens à ta disposition ce n’est quand même pas très dur de retrouver son énoncé et de voir comment l’appliquer ici. Ce serait beaucoup plus utile pour toi que d’attendre la réponse toute faite....

Hors ligne

#9 06-12-2020 20:20:53

Super Yoshi
Membre
Inscription : 06-10-2019
Messages : 33

Re : convergence ou divergence d'une intégrale

bonsoir,

j'ai trouvé le résultat d'une autre manière ( ça ressemble un peu à la méthode de @zebulor) .

Ce serait beaucoup plus utile pour toi que d’attendre la réponse toute faite....

La première intégrale est convergente et la deuxième divergente, donc non je n'attendais pas la réponse ^^
merci à tous pour votre aide

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante quinze plus soixante quatre
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums