Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 24-11-2020 12:16:20

Free13
Membre
Inscription : 18-09-2020
Messages : 32

Comment prouver qu'une fonction est uniformément continue ?

Bonjour à tous !

Je suis face à un problème de taille, pour prouver qu'une fonction est continue, je pense qu'il faut que je démontre qu'en tout point x, la limite quand x tend vers x0 de f(x) est égale à f(x0).

Cependant, je ne sais pas du tout comment prouver qu'une fonction est uniformément continue, autrement qu'en essayant de voir si elle est k-lipschitz.

Si une fonction est UC elle est C mais bien sur cela ne marche pas dans l'autre sens, et je crois avoir assez bien saisi que dans le cadre de la définition d'une continuité uniforme le choix du delta ne dépend pas du point dans lequel on se place : quel que soit l'intervalle elle sera continue.

Mais je ne sais pas du tout comment passer à la pratique.

Merci d'avance !!
F

Hors ligne

#2 24-11-2020 12:28:23

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 835

Re : Comment prouver qu'une fonction est uniformément continue ?

Bonjour,

  Pour démontrer qu'une fonction est uniformément continue, on utilise souvent deux outils :
* démontrer qu'elle est lipschitzienne, grâce au théorème des accroissements finis
* revenir à la définition, et utiliser le théorème de Heine disant que toute fonction continue sur un segment est uniformément continue.

Tu trouveras plusieurs exemples sur cette feuille d'exercices.

F.

Hors ligne

#3 24-11-2020 17:43:13

Free13
Membre
Inscription : 18-09-2020
Messages : 32

Re : Comment prouver qu'une fonction est uniformément continue ?

D'accord merci beaucoup je n'avais pas du tout vu les choses comme cela !

Très bonne soirée à vous,

F

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt quatre plus quatre-vingt quatre
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums