Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 22-03-2020 10:47:29

SimbaLeRoi
Invité

Theorie de la mesure

Bonjour et merci de votre atention, je n'arrive pas a monter la proprièté suivante, si quelqu'un veut bien m'aider.

On se place sur [tex][0,1]^{2}[/tex] muni de la mesure produit usuel. On se donne un Ensemble negligeable N et j'aimerai montrer que pour tout y dans [0,1,  [tex]\{x \in [0,1], \; (x,y)\in N \}[/tex]
Mais je sais pas du tout comment m'y prendre ...
Merci encore bonne journée

#2 22-03-2020 10:49:45

SimbaLeRoi
Invité

Re : Theorie de la mesure

J'ai pas fini ma phrase pardon ^^'.
Montrer que pour tout y dans [0,1] [tex]\{x\in [0,1], \; (x,y)\in N \}[/tex] EST NEGLIGEABLE

Merci

#3 22-03-2020 11:11:07

SimbaLeRoi
Invité

Re : Theorie de la mesure

J'ai fait cela, mais je suis pas du tout sur de moi :
Si on note [tex]A_y[/tex] l'ensemble cidessus alors c'est l'une des section de N donc
[tex]\int _{[0,1]} \lambda(A_y).d\lambda(y)=(\lambda \otimes \lambda)(N)=0[/tex]
Comme c'est une integrale de fonction positive on en conclue que pour lambda-presque tout y de [0,1] Ay est de mesure nulle

(Desoler j'ai bloquer une heure dessus er juste après avoir poster le message j'ai trouver sa ^^')

#4 22-03-2020 21:18:41

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 615

Re : Theorie de la mesure

Bonjour,

  Dans ton énoncé, j'imagine que tu voulais dire "pour presque tout y...".
Ta démonstration semble correcte. Comment justifies-tu la première des deux égalités ci-dessous :

SimbaLeRoi a écrit :

[tex]\int _{[0,1]} \lambda(A_y).d\lambda(y)=(\lambda \otimes \lambda)(N)=0[/tex]

F.

Hors ligne

Pied de page des forums