Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 24-02-2020 21:00:25

Tmota
Membre
Inscription : 18-12-2019
Messages : 95

Eléments d'ordres finis

Bonsoir,

je bloque sur la dernière question de l'exercice suivant :

Exercice a écrit :

Soit $a$ et $b$ deux éléments d'ordres respectifs $m$ et $n$ d'un groupe abélien $(G,.)$.
1) On suppose $m$ et $n$ sont premiers entre eux. Montrer que $ab$ est d'ordre $mn$.
2) On ne suppose plus $m$ et $n$ premiers entre eux, l'élément $ab$ est-il nécessairement d'ordre $ppcm(m,n)$.
3) Soit $d$ un diviseur de $m$. Montrer qu'il existe un élément d'ordre $d$ dans $G$.
4) Existe-t-il dans un $G$ un élément d'ordre $ppcm(m,n)$ ?

Les indications de la correction sont les suivantes :
Partir des décompositions en facteurs premiers de $m$ et $n$, on peut écrire en autorisant les exposants à être nuls :

$m=p_1a_1...p_ra_r$ avec $a_i=v_{p_i}(m)$
$n=p_1b_1...p_rb_r$ avec $b_i=v_{q_i}(m)$

On sait qu'alors $ppcm(m,n)=p_1^{max(a_1,b_1)}...p_r^{max(a_r,b_r)}$.

En fait, je suis perdu dès ces premiers éléments de correction.

Pouvez-vous m'aider ?
Merci d'avance.

Hors ligne

#2 24-02-2020 23:34:55

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 494

Re : Eléments d'ordres finis

Bonjour,

  Et toi, comment fais-tu pour calculer le ppcm de deux nombres quand tu connais leur décomposition en produit de facteur premiers, par exemple 12 et 18?

F.

Hors ligne

#3 25-02-2020 10:07:26

Tmota
Membre
Inscription : 18-12-2019
Messages : 95

Re : Eléments d'ordres finis

Alors je fais ceci :
$12=2^2\times 3$
$18=2\times 3^2$

Et je prends tous les facteurs qui figurent dans l'un au moins de ces produits, avec le plus grand exposant :

$ppcm(12,18)=2^2\times 3^2=4\times 9=36$.

Et sur un autre exemple :

$72=2^3\times 3^2\times 11^0$
$132=2^2\times 3^1\times 11^1$

Alors :
$ppcm(72, 132)=2^{max(3,2)}\times 3^{max(2,1)} \times 11^{max(0,1)}$

Soit :
$ppcm(72, 132)=2^{3}\times 3^{2} \times 11^{1}=8\times 9\times 11=792$

Mais je ne vois pas ce que signifie $v_{p_i}(m)$ et $v_{q_i}(n)$

Dernière modification par Tmota (25-02-2020 10:08:35)

Hors ligne

#4 25-02-2020 13:44:31

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 494

Re : Eléments d'ordres finis

$v_{p_i}(m)$ désigne justement l'exposant du nombre premier $p_i$ dans la décomposition en facteurs premiers de $m$ : $m=\prod_{i=1}^r p_i^{v_{p_i}(m)}$.

Hors ligne

#5 25-02-2020 15:51:51

Tmota
Membre
Inscription : 18-12-2019
Messages : 95

Re : Eléments d'ordres finis

Merci, je comprends beaucoup mieux.

Pour répondre à cette dernière question 4, j'avais pensé écrire que $p_i^{max(a_i,b_i)}$ est un diviseur de $m$ ou de $n$.

Donc par la question 3, il existe $x_i$ un élément d'ordre $p_i^{max(a_i,b_i)}$ dans $G$.

Dans la décomposition écrite pour m et n, les $p_i^{max(a_i,b_i)}$ sont deux à deux premiers entre eux. Donc l'élément x_1\cdots x_r est d'ordre $p_1^{max(a_1,b_1)}\cdots p_r^{max(a_r,b_r)}=ppcm(m,n)$ par application de la question 1.

Qu'en pensez-vous ?

Hors ligne

#6 26-02-2020 06:50:03

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 494

Re : Eléments d'ordres finis

Ça m’a l’air correct !

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt quatorze plus quatre-vingt onze
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums