Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 08-02-2020 23:19:42

leon92
Membre
Inscription : 08-02-2020
Messages : 2

analyse l2 mp serie numerique

Bonjour!
je vous que vous m'aidiez à calculer la serie allant de 0 à linfinie de terme general 1/(n!(n^4+n^2+1))
merci d'avance

Dernière modification par leon92 (08-02-2020 23:21:54)

Hors ligne

#2 09-02-2020 07:52:29

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : analyse l2 mp serie numerique

Bonjour,
On ne va pas faire ça à ta place ! Mais on peut t'aider, donc dit nous d'abord ce que tu as fait, où tu bloques et pourquoi etc.

Hors ligne

#3 09-02-2020 08:33:43

leon92
Membre
Inscription : 08-02-2020
Messages : 2

Re : analyse l2 mp serie numerique

bonjour!
ce que j'aimerai savoir c'est ce qu'il faut faire cad soit avoir quelque chose de telecosiques sit faire des changements de variables que je ne vois pas

Hors ligne

#4 10-02-2020 20:46:46

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : analyse l2 mp serie numerique

Bonsoir,
Ce n'est pas un truc facile (du tout), du coup je vais donner ce que j'ai fait jusqu'ici (juste pour le contexte, à quel niveau es tu ? Et où as tu rencontré cette question ?) :
$\sum\limits_{n=1}^{+\infty} \frac{1}{n! (n^4+n^2+1)} = \sum\limits_{n=1}^{+\infty} \frac{- 2 \it{i}}{n!.\sqrt{3}}.(\frac{1}{n^{2}-z}-\frac{1}{n^{2}-\overline z})$
Avec $z = \frac{-1+\it{i} \sqrt{3}}{2}$.
Soit $c \in \mathbb{C}$ tel que $\mid c \mid = 1$, étudions $\sum\limits_{n=1}^{+\infty} \frac{1}{n!.(n^{2}+c)}$ ($z$ vérifie cette condition !).
$\sum\limits_{n=1}^{+\infty} \frac{1}{n!.(n^{2}+c)} = \frac{1}{1+c} + \sum\limits_{n=2}^{+\infty} \frac{1}{n!.n^2} \sum\limits_{k=0}^{+\infty} \frac{(-1)^k.c^{k}}{n^{2k}}$.
Puisque le terme de cette somme converge uniformément, on peut inverser les signes sommes (avec Fubini-Tonelli ou de la théorie des familles sommables, mais ça reste plus ou moins la même chose) :
$\sum\limits_{n=1}^{+\infty} \frac{1}{n!.(n^{2}+c)} = \frac{1}{1+c} + \sum\limits_{k=0}^{+\infty} (-1)^k.c^{k}.(\sum\limits_{n=2}^{+\infty} \frac{1}{n^{2(k+1)}n!})$.

Donc maintenant on va s'intéresser à $\sum\limits_{n=1}^{+\infty} \frac{1}{n^{q}n!}$ avec $q \in \mathbb{N}^*$ (on part de 1 pour simplifier les calculs).
Pour cela, je me suis dit "mmmh pourquoi pas série entière + équation différentielle", c'est partit ! :
Posons $f(x) = f_{q}(x) = \sum\limits_{n=1}^{+\infty} \frac{x^{n}}{n!.n^{q}}$.
Posons $g_{i+1}(x) = x.g_{i}'(x)$ et $g_{0} = f$.
On a par récurrence que $g_{i} = f_{q-i}$ (en fait j'ai construit cette suite pour avoir ça, c'est un peu chiant a expliqué et j'ai d'autres choses à faire ce soir donc je laisse de côté l'aspect "d'où ça vient").
L'idée de base que l'on puisse 'remonter' ces fonctions à partir de la fin dont on connait l'expression : $g_{q}(x) = e^{x} - 1$.
La première idée que j'ai eu c'est de l'écrire sous forme matriciel :
$X' = AX$ avec $X = (g_{i})_{0 \geq i \geq k-1}$ et $A(x) = (\frac{\delta_{i,j-1}}{x})_{1 \leq i,j \leq q}$ (la matrice $A(x)$ est en fait tout simplement constitué de $\frac{1}{x}$ sur la diagonale supérieure et des $0$ ailleurs).
Après en écrivant ceci j'ai eu l'idée qu'on pourrait peut-être "remonter" à la main ceci en essayant de distinguer une récurrence...


NB : Pour ceux que ça pourrait motiver il semblerait que la somme de cette série soit $\frac{\it{e}}{2}$ ! Reste plus qu'à le prouver !

Dernière modification par Maenwe (10-02-2020 21:12:49)

Hors ligne

#5 10-02-2020 20:59:19

freddy
Membre chevronné
Lieu : Paris
Inscription : 27-03-2009
Messages : 6 901

Re : analyse l2 mp serie numerique

Maenwe a écrit :

Bonsoir,
Ce n'est pas un truc facile (du tout), du coup je vais donner ce que j'ai fait jusqu'ici (juste pour le contexte, à quel niveau es tu ? Et où as tu rencontré cette question ?) :
$\sum\limits_{n=1}^{+\infty} \frac{1}{n! (n^4+n^2+1)} = \sum\limits_{n=1}^{+\infty} \frac{- 2 \it{i}}{n!.\sqrt{3}}.(\frac{1}{n^{2}-z}-\frac{1}{n^{2}-\overline z})$
Avec $z = \frac{-1+\it{i} \sqrt{3}}{2}$.
Soit $c \in \mathbb{C}$ tel que $\mid c \mid = 1$, étudions $\sum\limits_{n=1}^{+\infty} \frac{1}{n!.(n^{2}+c)}$ ($z$ vérifie cette condition !).
$\sum\limits_{n=1}^{+\infty} \frac{1}{n!.(n^{2}+c)} = \frac{1}{1+c} + \sum\limits_{n=2}^{+\infty} \frac{1}{n!.n^2} \sum\limits_{k=0}^{+\infty} \frac{(-1)^k.c^{k}}{n^{2k}}$.
Puisque le terme de cette somme converge uniformément, on peut inverser les signes sommes (avec Fubini-Tonelli ou de la théorie des familles sommables, mais ça reste plus ou moins la même chose) :
$\sum\limits_{n=1}^{+\infty} \frac{1}{n!.(n^{2}+c)} = \frac{1}{1+c} + \sum\limits_{k=0}^{+\infty} (-1)^k.c^{k}.(\sum\limits_{n=2}^{+\infty} \frac{1}{n^{2(k+1)}n!})$.

Donc maintenant on va s'intéresser à $\sum\limits_{n=1}^{+\infty} \frac{1}{n^{q}n!}$ avec $q \in \mathbb{N}^*$ (on part de 1 pour simplifier les calculs).
Pour cela, je me suis dit "mmmh pourquoi pas série entière + équation différentielle", c'est partit ! :
Posons $f(x) = f_{q}(x) = \sum\limits_{n=1}^{+\infty} \frac{x^{n}}{n!.n^{q}}$.
Posons $g_{i+1}(x) = x.g_{i}'(x)$ et $g_{0} = f$.
On a par récurrence que $g_{i} = f_{q-i}$ (en fait j'ai construit cette suite pour avoir ça, c'est un peu chiant a expliqué et j'ai d'autres choses à faire ce soir donc je laisse de côté l'aspect "d'où ça vient").
L'idée de base que l'on puisse 'remonter' ces fonctions à partir de la fin dont on connait l'expression : $g_{q}(x) = e^{x} - 1$.
La première idée que j'ai eu c'est de l'écrire sous forme matriciel :
$X' = AX$ avec $X = (g_{i})_{0 \geq i \geq k-1}$ et $A(x) = (\frac{\delta_{i,j-1}}{x})_{1 \geq i,j \geq q}$ (la matrice $A(x)$ est en fait tout simplement constitué de $\frac{1}{x}$ sur la diagonale supérieure et des $0$ ailleurs).
Après en écrivant ceci j'ai eu l'idée qu'on pourrait peut-être "remonter" à la main ceci en essayant de distinguer une récurrence...


NB : Pour ceux que ça pourrait motiver il semblerait que la somme de cette série soit $\frac{\it{e}}{2}$ ! Reste plus qu'à le prouver !

Salut,

ce serait plutôt $\dfrac{1}{2}(e-2)$, c'est très calculatoire. :-)


"Quand un homme a faim, mieux vaut lui apprendre à pêcher que de lui donner un poisson" Confucius

Hors ligne

#6 10-02-2020 21:08:38

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : analyse l2 mp serie numerique

Oui très calculatoire ! Mais je n'ai pas trouvé plus simple, mais si quelqu'un a plus simple je suis preneur ^^
Oui Wolfram donne bien $\frac{1}{2} (\it{e}-2)$ mais c'est pour la somme partant de 1, nous on veut la somme partant de 0, du coup c'est bien $\frac{\it{e}}{2}$ :)

Dernière modification par Maenwe (10-02-2020 21:11:02)

Hors ligne

#7 10-02-2020 21:36:00

freddy
Membre chevronné
Lieu : Paris
Inscription : 27-03-2009
Messages : 6 901

Re : analyse l2 mp serie numerique

Maenwe a écrit :

Oui très calculatoire ! Mais je n'ai pas trouvé plus simple, mais si quelqu'un a plus simple je suis preneur ^^
Oui Wolfram donne bien $\frac{1}{2} (\it{e}-2)$ mais c'est pour la somme partant de 1, nous on veut la somme partant de 0, du coup c'est bien $\frac{\it{e}}{2}$ :)

Exact, je n'avais pas bien vu qu'on partait de 0, pas de 1 ;-)

Dernière modification par freddy (10-02-2020 21:50:25)


"Quand un homme a faim, mieux vaut lui apprendre à pêcher que de lui donner un poisson" Confucius

Hors ligne

#8 12-02-2020 11:11:49

aviateur
Membre
Inscription : 19-02-2017
Messages : 183

Re : analyse l2 mp serie numerique

Bonjour

Je pose  $ f(z)=\sum_{n=0}^\infty \dfrac{z^n}{n! (n^4+n^2+1)}$
Une décomposition en éléments simples sur $\C$!  donne $\dfrac{1}{n^4+n^2+1}=\sum_{j=1}^4 \dfrac{h_j}{n-a_j} $
et donc $f(z)=\sum_{j=1}^4 h_j f_j(z)$ avec   $ f_j(z)= \sum_{n=0}^\infty \dfrac{z^n}{n! (n-a_j)}$
où  $(a_1,a_2)=(-\dfrac{1}{2}-\dfrac{i \sqrt{3}}{2},\dfrac{1}{2}-\dfrac{i \sqrt{3}}{2})$   
et   $(h_1,h_2)=(\dfrac{1}{4}+\dfrac{i}{4 \sqrt{3}},-\dfrac{1}{4}+\dfrac{i}{4 \sqrt{3}})$

$a_j,h_j,j=3,4$  sont les conjugués

$f_j(z)$  vérifient l'équation différentielle  $z f_j'(z)-a_j f_j(z)=e^z$
et d'autre part on a $f_2'(z)=f_1(z)$   (cela vient de la relation $a_1=a_2-1$).

D'où  la relation $ f_1(1)=e+a_2 f_2(1). $  (cela ce simplifie car $h_1a_1+h_2a_2=0$)

Ainsi   $h_1f_1(1)+h_2 f_2(1)=  \dfrac{e}{4}+\dfrac{i e}{4 \sqrt{3}}$

Par conjugaison  on a aussi $h_3f_3(1)+h_4 f_4(1)=  \dfrac{e}{4}-\dfrac{i e}{4 \sqrt{3}}$

D'où $f(1)=e/2.$

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante quatre moins quinze
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums