Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 26-01-2020 15:24:56

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

BONJOUR!
j'ai besoin d'aide pour calculer la serie pour n de 0 à + l'infinie de arctan(8n/n^4-2n^2+5)
j'ai essayer d'utiliser le fait que tan(a-b)=(tana-tanb)/(1+tana*tanb) mais j'ai pas pu trouver
merci d'avance!

Dernière modification par moise0738 (28-01-2020 20:56:39)

Hors ligne

#2 28-01-2020 20:43:18

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonsoir,
Non je pense juste que l'aspect non Latex et la tête de la formule ne donne pas très envie de se lancer dedans et on a pas forcément tous le temps de se lancer dans les calculs, quoiqu'il en soit :
C'est cette formule que tu cherches à calculer $\sum\limits_{n=0}^{+ \infty} \arctan( \frac{8n}{n^{4}-2n^{2}+5})$ ?

Dernière modification par Maenwe (28-01-2020 20:44:29)

Hors ligne

#3 28-01-2020 20:56:10

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

bonsoir!
c'est effectivement! cette somme

Dernière modification par moise0738 (28-01-2020 21:00:26)

Hors ligne

#4 29-01-2020 07:24:40

Zebulor
Membre
Inscription : 21-10-2018
Messages : 829

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonjour,
La convergence est facile à montrer...
Pour le reste ça sent la téléscopie. En posant $u_n=\arctan( \frac{8n}{n^{4}-2n^{2}+5})$
As tu essayé la piste qui consiste à créer une suite $(v_n)$ de sorte que $u_n=v_{n+1}-v_n$
Tu peux ensuite t'intéresser à la somme partielle : $\sum\limits_{n=0}^{p} u_p$

Dernière modification par Zebulor (29-01-2020 07:29:09)

Hors ligne

#5 29-01-2020 14:23:06

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonjour,
Oui j'ai essayer de trouver une suite (vn) mais j'y arrive pas
Je ne vois pas comment on peut faire.
J'ai tout essayé (sauf la bonne methode je suppose )

Dernière modification par moise0738 (29-01-2020 14:24:31)

Hors ligne

#6 29-01-2020 18:37:07

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonsoir,
C'est exactement la piste qu'à proposé Zebulor ! (que je salue au passage)
Je vais te guider :
Essaye dans un premier temps de mettre le dénominateur sous la forme $(n^{2} - a ) ^{2} + b$.

Hors ligne

#7 29-01-2020 20:08:10

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonsoir,
Si on fait ca on obtient au denominateur (n^2-1)^2+4
Quel est l'objectif
Je ne vois pas là où vous voulez en venir
On veut V(n+1)-Vn ou tan(V(n+1)-Vn)

Dernière modification par moise0738 (29-01-2020 20:28:44)

Hors ligne

#8 29-01-2020 20:34:16

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

La formule a utiliser pour obtenir un quelconque résultat est celle ci : $\arctan(a) - \arctan(b) = \arctan(\frac{a-b}{1+ab})$, donc il faut essayer de se rapporter à cette forme, pour y aboutir on peut commencer à faire apparaître le dénominateur, ce que j'ai voulu te faire faire, est-ce que tu vois la suite maintenant ?

Hors ligne

#9 29-01-2020 21:09:51

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Honnêtement je ne voit pas 2 suutes consecutifs qui verifie notre equation

Hors ligne

#10 29-01-2020 21:19:04

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

je ne parles pas de deux suites consécutives, je parle de deux nombres $a$ et $b$ :
Pour trouver le résultat je me suis demandé que pourrait être ces $a$ et $b$, donc j'ai bien sûr commencer par factoriser par 4, puis après simplification, j'ai de nouveau regardé le dénominateur, et je me suis demandé que pourrait être $a$ et $b$ de sorte que $ab = 4.(n^{2} - 1)^{2}$. Est-ce que ça t'aide ?

Hors ligne

#11 29-01-2020 21:28:07

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Mais il faut pas oublier que a- b =2n

Dernière modification par moise0738 (29-01-2020 22:36:27)

Hors ligne

#12 29-01-2020 21:38:53

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Certes, mais on ne peut pas tout contrôler, donc on tente de contrôler d'abord le dénominateur car il semble (et est selon moi) qu'il impose plus de contrainte sur $a$ et $b$...

Après on peut effectivement se passer de l'intuition pour trouver $a$ et $b$ en utilisant l'autre équation que tu as exhibé (plus ou moins celle là) :
$a-b = 4n$
$ab = 4(n^{2}-1)^{2}$

Donc il faut résoudre $4nb + b^{2} = 4(n^{2}-1)^{2}$...

A toi de choisir la méthode que tu préfères.

Hors ligne

#13 29-01-2020 22:32:09

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

en faites vous vous êtes trompés on cherche a et b tel que ab=¼(n²-1)²

Dernière modification par moise0738 (29-01-2020 22:43:27)

Hors ligne

#14 29-01-2020 22:34:39

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

l'intuition n'est pas forcement très evidente pour ce cas(en n'oubliant pas le a-b=2n)

Dernière modification par moise0738 (29-01-2020 22:46:14)

Hors ligne

#15 30-01-2020 06:03:34

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonjour,
Oui je me suis effectivement trompé ^^ mais ça ne change pas grand chose.
On cherche  $ab = 0,25 (n^{2}-1)^{2} $ donc on cherche à décomposer ce produit en deux termes qui semblent convenable et qui pourrait se faire s'annuler les terme avec des puissances se n plus grande que 2, donc prendre $a= 0,5 (n-1)^{2}$ et $b  = 0,5(n+1)^{2}$ semble cohérent.
Normalement avec ça, ça marche

Hors ligne

#16 30-01-2020 12:23:55

moise0738
Membre
Inscription : 26-01-2020
Messages : 42

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonjour,
En faite j'ai trouvé 3∏/8
Mais il faut inverser le a et le b..
Merci pour l'aide.
Mais j'ai aussi trouver 3∏/8
En trouvant a et b en utilisant les 2 equations..
Meme si en examin l'intuition sera plus utile (si possible)
Encore merci beaucoup????

Dernière modification par moise0738 (30-01-2020 12:25:22)

Hors ligne

#17 30-01-2020 21:24:11

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonsoir,
Content de t'avoir aidé.

Hors ligne

#18 30-01-2020 21:52:04

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 409

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Et j'ajouterai félicitations à Maenwe, parce que l'énoncé était loin d'être facile, il était délicat de voir comment faire apparaître la série télescopique, et Maenwe explique très bien dans son post comment il a fait... Bravo!

Hors ligne

#19 31-01-2020 18:12:36

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 317

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Merci ! J'ai toujours trouvé essentiel d'expliquer le cheminement intellectuel, encore plus que les méthodes de résolutions donc je fais de mon mieux pour exposer la façon dont je pense les maths.

Hors ligne

#20 31-01-2020 19:52:51

Zebulor
Membre
Inscription : 21-10-2018
Messages : 829

Re : calcul de la somme de la serie numerique arctan(8n/n^4-2n^2+5)

Bonsoir,
@Maenwe : je te salue à mon tour talentueux jeune homme !

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt moins quatre-vingt huit
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums