Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 07-12-2019 16:22:03

Emna38500
Membre
Inscription : 07-12-2019
Messages : 1

Dm de maths trigonométrie

Bonjour,
J'ai un dm de maths mais je beug a la question 4. On construit un polygone régulier a n côtés inscrit dans un cercle de rayon 1.

Montrez que l'aire du triangle AOB est  :
Sin (pi/n ) × cos (pi/n)

Hors ligne

#2 07-12-2019 18:43:08

Zarathoustram
Membre
Inscription : 01-12-2019
Messages : 11

Re : Dm de maths trigonométrie

Bonsoir Emna,

Es-tu certaines de l'énoncé ? Ne serait-ce pas plutôt [tex]\frac{1}{2}sin(\frac{2\pi}{n})*cos(\frac{2\pi}{n})[/tex] ?
En supposant que AB soit un segment de ton polygone, O son centre.

Quoiqu'il en soit, pour un telle question (avec n), je te conseille de regarde ce qu'il se passe pour les premières valeurs de n. Un polygone avec un ou deux côtés n'a pas trop de sens, mais avec trois, ça devient intéressant. Essaie avec n = 4, 6, 8 et éventuellement 12 (tu trouveras facilement les valeurs de cosinus et sinus avec ces n là).

Si c'est l'énoncé ci-dessus, avant de faire des calculs, dessines pour ces valeurs de n (au moins pour 4, 8 et 12) dans un cercle trigonométrique (sur la moitié haute suffira, pour 12, tu divises juste le quart en trois).
Ensuite, représente les valeurs de tes cosinus et sinus sur le dessin. Ca te donnera un premier découpage de ton triangle.
Pour finir, continue de découper, voire plutôt dédoubler ton triangle pour te retrouver avec une figure "simple" ou apparaissent tes valeurs de sinus et cosinus.

Si vraiment tu galères: Dessines deux triangles identiques pour n = 12, mets un trait rouge pour le cosinus, bleu pour le sinus, découpe les deux triangles, et "joue" avec pour trouver une forme simple.

Hors ligne

#3 09-12-2019 12:43:49

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 14 050

Re : Dm de maths trigonométrie

Re,

Je pense aussi que [AB] est l'un des n côtés du polygone et O le centre du cercle dans lequel  il est inscrit.
AOB est donc un triangle isocèle de sommet principal O.
Dans ce triangle, on trace aussi la médiatrice de [AB], j'appelle H l'intersection avec [AB].
[OH) est donc la bissectrice de $\widehat{AOB}$
$\widehat{AOB}=\dfrac{2\pi}{n}$ et donc $\widehat{AOH}=\dfrac{\pi}{n}$
Aire du triangle AOB $=\dfrac{AB\times OH}{2}=\dfrac{2AH\times OH}{2}=AH\times OH$
Reste à trouver OH et AH.
Trigo dans le triangle HAO rectangle en H
$\sin\widehat{HOA}=\dfrac{AH}{OA}\quad \iff\quad \sin \dfrac{\pi}{n}=\dfrac{AH}{1}$
Soit $AH = \sin \dfrac{\pi}{n}$

$\cos\widehat{HOA}=\dfrac{OH}{OA}\quad \iff\quad \cos \dfrac{\pi}{n}=\dfrac{OH}{1}$
Soit $OH = \cos \dfrac{\pi}{n}$

En conséquence l'aire du triangle AOB est :
$\sin \dfrac{\pi}{n}\times \cos \dfrac{\pi}{n}$

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quaranteet un plus soixante dix-sept
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums