Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 17-11-2019 12:50:14

martiflydoc
Membre
Inscription : 20-10-2019
Messages : 24

Caractérisation séquentielle

Bonjour,
Dans la caractérisation séquentielle (pour une fonction) de la limite À DROITE, il faut prendre tous les éléments de la suite supérieur ou égal à la limite ?
De plus si une fonction est monotone ,suffit-il de prendre une suite de même monotonie ?

Merci

Hors ligne

#2 17-11-2019 15:04:03

Maenwe
Membre confirmé
Inscription : 06-09-2019
Messages : 182

Re : Caractérisation séquentielle

Bonjour,

Je suis sûr que tu peux répondre toi même au moins à la 1ere question ;) si tu prends une fonction, disons f, et que tu étudies sa limite à droite de $x$ c'est comme étudier la limite de h en $x $ où h est la restriction de f à  $[x; + \infty[$, et la caractérisation séquentielle de h en x est ?

Pour ta deuxième question, ton affirmation est vraie même sans la monotonie de f, la supposition suivante suffit à montrer que f est continue :
Pour toute suite $(x_{n})$ croissante convergeant vers x, $(f (x_{n}))$ converge vers $f (x) $.

Et on a la même chose si on remplace "croissant" par "décroissant", et pour montrer tout ceci il suffit de reprendre la preuve de la caractérisation séquentielle  ( celle qui se fait par l'absurde).

Dernière modification par Maenwe (17-11-2019 15:05:20)

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
soixante seize moins dix-huit
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums