Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 10-11-2019 11:35:24

Guitout
Membre
Inscription : 18-05-2019
Messages : 45

Exercice distance topologie

Bonjour, je n'arrive pas à voir mon erreur dans la résolution de cet exo :

Soit [tex]X=]0,\infty][/tex]. Pour [tex]x,y\in X[/tex], on note [tex]\delta(x,y)=\left\lvert \cfrac{1}{x}-\cfrac{1}{y}\right\rvert[/tex].

a) Démontré que [tex]\delta[/tex] est une distance sur [tex]X[/tex].

FAIT

b) Montrer que les boules ouvertes [tex]B(a,r)[/tex] pour cette distance sont des intervalles de [tex]\mathbb{R}[/tex] dont on précisera les bornes en fonction de [tex]a[/tex] et de [tex]r[/tex].

Soit [tex]a\in X[/tex] et [tex]r>0[/tex], alors [tex]B(a,r)=\{x\in X \mid \delta(a,x)<r\}[/tex]

Cela revient à chercher [tex]x[/tex] tel que :
[tex]\left\lvert \cfrac{1}{a}-\cfrac{1}{x}\right\rvert <r[/tex]
[tex]\Longleftrightarrow -r<\cfrac{1}{a}-\cfrac{1}{x}<r[/tex]
[tex]\Longleftrightarrow -r-\cfrac{1}{a}<-\cfrac{1}{x}<r-\cfrac{1}{a}[/tex]
[tex]\Longleftrightarrow r+\cfrac{1}{a}>\cfrac{1}{x}>-r+\cfrac{1}{a}[/tex]
[tex]\Longleftrightarrow \cfrac{1}{r+\frac{1}{a}}<x<\cfrac{1}{-r+\frac{1}{a}}[/tex]

Je pense que l'erreur apparaît quand j'applique la fonction inverse à l'avant dernière ligne, mais je vois pas en quoi.
Je sens que c'est une erreur tout bête mais je vois pas x)

Hors ligne

#2 10-11-2019 15:03:38

freddy
Membre chevronné
Lieu : Paris
Inscription : 27-03-2009
Messages : 6 737

Re : Exercice distance topologie

Salut,

que se passe t-il si $ar=1$ ?


"Quand un homme a faim, mieux vaut lui apprendre à pêcher que de lui donner un poisson" Confucius

Hors ligne

#3 10-11-2019 15:43:14

Guitout
Membre
Inscription : 18-05-2019
Messages : 45

Re : Exercice distance topologie

Je crois que j'ai compris :

Comme [tex]\forall r>0,\forall a \in X, r+\cfrac{1}{a}>0[/tex] et que [tex]\cfrac{1}{x}>0[/tex] (car [tex]x\in X=\mathbb{R}^+[/tex]), il faut vérifier le signe de [tex]\cfrac{1}{a}-r[/tex]. Ca nous donne [tex]\cfrac{1}{a}-r>0 \Longleftrightarrow ar<1[/tex]

Ce qui donne 3 cas à traiter :

SI [tex]\cfrac{1}{a}-r>0 \Longleftrightarrow ar<1[/tex], on a : [tex]r+\cfrac{1}{a}>\cfrac{1}{x}>\cfrac{1}{a}-r \Longleftrightarrow x\in \left]\cfrac{1}{r+\cfrac{1}{a}},\cfrac{1}{\cfrac{1}{a}-r}\right[[/tex].

SI [tex]\cfrac{1}{a}-r=0 \Longleftrightarrow ar=1[/tex],on a : [tex]2r>\cfrac{1}{x}>0 \Longleftrightarrow x\in \left]\cfrac{1}{2r},\infty\right[[/tex].

SI [tex]\cfrac{1}{a}-r<0 \Longleftrightarrow ar>1[/tex], on a : [tex]r+\cfrac{1}{a}>\cfrac{1}{x}>0>\cfrac{1}{a}-r \Longleftrightarrow x\in \left]\cfrac{1}{r+\cfrac{1}{a}},\infty\right[[/tex].

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt deux plus soixante dix-neuf
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums