Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 07-11-2019 09:25:00

Cédrix
Membre
Inscription : 15-08-2019
Messages : 11

théorèmes de stabilité

Bonjour,
je trouve tantôt le théorème 1, tantôt le théorème 2. Sont-ils équivalents ?
(je ne pense pas .... je pense que le théorème 2 implique le théorème 1 mais qu'on a pas forcément la réciproque).
Qu'en pensez-vous ?
Théorème 1 : pour tout graphe probabiliste "fortement" connexe à 2 ou 3 sommets, de matrice de transition M, il existe un unique état stable P=(x y) ou (x y z) solution de l'équation matricielle P*M=P.
Cet état stable est indépendant de l'état initial. Et si n tend vers l'infini, alors l'état probabiliste Pn tend vers l'état stable P.
Théorème 2 : pour tout graphe probabiliste d'ordre 2 ou 3 dont la matrice de transition ne comporte pas de 0, l'état Pn tend vers un état P indépendant de l'état initial P0.
P vérifie P=P*M et est appelé état stable.
merci !
C.

Hors ligne

#2 07-11-2019 15:58:00

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 303

Re : théorèmes de stabilité

Bonjour,

  Si ton graphe est d'ordre 2, les deux théorèmes sont équivalents (un chemin d'un sommet à un autre = une arête d'un sommet à un autre).
Si ton graphe est d'ordre 3, tu as des graphes fortement connexes dont la matrice de transition comporte des zéros. C'est donc plutôt le théorème 1 qui entraîne le théorème 2, non?

F.

Hors ligne

#3 08-11-2019 07:58:45

Cédrix
Membre
Inscription : 15-08-2019
Messages : 11

Re : théorèmes de stabilité

Bonjour,
je ne comprends pas, excusez-moi mon erreur de raisonnement.
je dirais plutôt que le thm 2 implique le thm 1 puisque SI une matrice est strictement positive ALORS elle est "fortement" connexe (et pas la réciproque).
Par contre, si un graphe avait la matrice de transition M (avec 2 zéros sur la diagonale et des 1 ailleurs), il serait bien fortement connexe.
Et le thm 1 vérifiant les bonnes hypothèses d'application admettrait comme état stable P=(0,5 0,5) ce qui est contradictoire avec la limite de Pn qui n'existerait pas si l'état initial était différent de (0,5 0,5).
Bref, le thm1 n'est pas valable dans ce cas. N'est-ce pas ?
Merci d'avance de toutes vos précisions à venir,
C.

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt huit moins trente neuf
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums