Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 20-09-2019 21:41:24

Maamar
Invité

Exercice concernant le théorème de la moyenne arithmétique géométrique

Bonjour , j'aimerais bien avoir une indication pour continuer ma démonstration dans un exercice.
L'énoncé de ce dernier et de montrer que :  le produit variant de k=1 jusqu'à n d'une variable Xk est inférieur ou égal à 1/n puissance n.
Avec Somme de ces Xk = 1 , et (X1,X2,X3,....,Xn) appartiennent à l'intervale [0,1]
Aussi on a déja démontré dans une question précédente que pour tout t appartenent à [0,1] , u(t)= t.(1-t)puissance n , u(t)<n puissance n / (n+1) puissance n+1 .
MERCI D'AVANCE !

#2 21-09-2019 15:58:56

freddy
Membre chevronné
Lieu : Paris
Inscription : 27-03-2009
Messages : 6 622

Re : Exercice concernant le théorème de la moyenne arithmétique géométrique

Salut,

la preuve consiste à prendre le produit des inverses sur $j$ de $k$ ramené à la puissance $p$ de $n$ dans l'intervalle concerné et hop, le tour est joué !

Bon, tu as compris que si tu n'écris pas les formules avec Latex, je ne pourrai pas t'aider car je ne comprends pas ton problème.
Courage, c'est facile !


"Quand un homme a faim, mieux vaut lui apprendre à pêcher que de lui donner un poisson" Confucius

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
trente huit plus quatre-vingt dix-huit
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums