Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 17-08-2019 01:05:55

hicham alpha
Membre
Inscription : 19-03-2018
Messages : 103

inclusion strict

Bonjour

Merci de m'indiquer la démarche à suivre pour résoudre cet exercice :

Soient K un corps infini, E un K-espace vectoriel, (Fk)1≤k≤n une famille de sous-espaces stricts i.e. pour
tout 1 ≤ k ≤ n, Fk $\nsubseteq $ E. Montrer que E $\neq$ $\bigcup_{k=1}^{n}F$k

Merci d'avance


La vie est un art

Hors ligne

#2 17-08-2019 08:46:34

Maenwe
Invité

Re : inclusion strict

Bonjour,

Tu peux commencer par montrer à quelles conditions cette union est un espace vectorielle. Tu peux simplement commencer par trouver cette condition pour 2 sous espaces vectoriels stricte pour simplifier la tache.

Cordialement.

#3 17-08-2019 12:52:12

hicham alpha
Membre
Inscription : 19-03-2018
Messages : 103

Re : inclusion strict

Bonjour
La condition voulu c'est que l'un est inclus dans l'autre. Mais je ne sais pas si j'arriverai à le généraliser pour n s-ev.


La vie est un art

Hors ligne

#4 17-08-2019 20:08:08

Maenwe
Invité

Re : inclusion strict

Bonsoir,

Par récurrence c'est possible, pour la faire voici une petite indication : tu peux commencer par montrer ça [tex]\forall x \in \cup_{k=1}^{n} A_{k}, -x \in \cup_{k=1}^{n} A_{k}[/tex] où les [tex]A_{k}[/tex] sont des ev. (En fait la seule chose qui empêche l'Union de former un espace vectoriel en général c'est la "stabilité" par l'addition). Bon courage et n'hésite pas a redemander si tu bloques sur la récurrence.

#5 21-08-2019 16:08:52

hicham alpha
Membre
Inscription : 19-03-2018
Messages : 103

Re : inclusion strict

Merci beaucoups


La vie est un art

Hors ligne

#6 23-08-2019 18:07:15

For
Invité

Re : inclusion strict

Bonjour,
Une autre méthode existe sans passer sur la CNS de l’union d’espaces vectoriels est un espace vectoriel.
Essaye tout d’abord de montrer le résultat pour n = 2 de façon directe avec une disjonction de cas. Normalement ça devrait te donner une idée de comment généraliser par récurrence.

#7 23-08-2019 22:04:05

Maenwe
Invité

Re : inclusion strict

Bonsoir,

C'est la 1ère idée que j'avais eu pour résoudre cette exercice, mais ce n'a pas aboutit. Prenons le cas n=2 :
Supposons [tex]E = A \cup B[/tex] avec A et B ev et stricte dans E.
Soit [tex]x \in E[/tex] alors [tex]x \in A[/tex] ou [tex]x \in B[/tex].
Là où je bloque c'est ce que je suppose ce que tu veuilles dire par disjonction de cas :
Si [tex]x \in A[/tex] que peut-on dire ? Et c'est là que je n'ai pas pu dire grand chose sans utiliser un autre élément de E et ainsi reproduire la preuve de la CNS que j'ai proposé en piste pour résoudre ce problème. Aurais tu une piste pour aller plus loin ?

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
trente six plus neuf
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums