Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#76 20-06-2019 15:09:00

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 507

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

RE,

Et dernière propriété   :

Citation incorrecte : il manque un élément essentiel qui la rend fausse :
une droite qui passe par le milieu d'un seul côté parallèlement à 2e côté, coupe l'autre le 3e côté en son milieu.

Ensuite dans le chapitre Triangle rectangle et cercle, et bien on n' a pas parlé de demi-cercle...

C'est normal, ne sois pas surpris : cela fait plus de 30 ans que je n'ai plus vu cette définition dans le chapitre concerné...

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#77 20-06-2019 16:27:08

yannD
Membre
Inscription : 19-10-2018
Messages : 622

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

j'ai essayé d'appliquer la définition du # 74 mais je ne vois pas comment tu en déduis les 2 autres définitions
Peux-tu m'expliquer s'il te plait ?

Hors ligne

#78 20-06-2019 18:29:44

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 507

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

Re,

Tout triangle rectangle est inscriptible dans un demi-cercle.
Tu prends [BC] hypoténuse et A l'angle droit..
Ya plein de solutions...
Tu prends I milieu de [BC].
1. [AI] médiane relative à l'hypoténuse, donc IA = IB =IC donc un cercle de centre de I est circonscrit au triangle ABC.
    Ce cercle a pour diamètre [BC], puisque son centre I en est le milieu.
    Et comme A est sur le cercle, d'après la définition il est contenu dans un demi-cercle...
2. a) On sait que les 3 médiatrices se coupent en I milieu de [BC]. Donc d'après la propriété du point d'une médiatrice :
        IA = IB = IC. Et on a donc un cercle de centre OI et de rayon IA = IB = IC... Voir ci-dessus...
    b) Mieux : on sait que le centre du cercle circonscrit à un triangle rectangle est le milieu de l'hypoténuse... Donc, voir 1.
    c) On ne sait pas tout ça... OK ! Alors, on le redémontre. Soit I le milieu de l'hypoténuse [BC].
        La perp. à (AB) passant par I coupe (AB) en H.  La perp. à (AC) passant par I coupe (AC) en K.
       $ (IH) \perp (AB)$
       $(AC) \perp (AB)$ ($\hat A$ est droit)
       Conclusion : $(IH) // (AC).
       Or, dans le tr. ABC la droite passe par le milieu du côté [BC] parallèlement au côté (AC), coupe le 3e côté [AB] en son milieu.
       H est donc le milieu de [AB]. Donc (IH) médiatrice de [AB]. Donc IA = IB.
       On montrerait de même que (IK) médiatrice de [AC]. Donc IA = IC.
       Donc IA = IB = IC. Voir 1.
3. Tu construis D symétrique de par rapport à I. Et tu montres que BACD est un rectangle ==> Diagonales [AD] et [BC] même longueur.
    AD = BC. I milieu de [AB] et [BC], d'où IB = IA = IC = ID. Tu gardes IB = IA = UC. Voir 1.
..........................

2. Réciproque.
    Le triangle ABC est dans un demi-cercle. Supposons que le plus grand côté s'appelle [BC]. [BC] est un diamètre de ce demi-cercle.
    a) L'angle $\widehat{BAC}$ est un angle inscrit qui intercepte l'arc  BC. Cet arc est aussi intercepté par l'angle au centre $\widehat{BIC}$
       L'angle inscrit vaut la moitié de l'angle au centre qui intercepte le même arc. $\widehat{BIC}$ est un angle plat et mesure 180°.
       Donc $\widehat{BAC}=90^\circ$. BAC est un triangle rectangle en A.
    b) A, B, C sur le cercle de diamètre [BC] et de centre I milieu de [BC]. D'où IB = IA = IC rayon.
        * Tu connais la réciproque.
           Si dans un triangle la médiane relative au plus grand côté vaut la moitié de ce côté, alors ce triangle est
           rectangle d'hypoténuse ce plus grand côté.
       * Tu ne la connais pas.
          Alors on part sur des calculs d'angles.
          IA = IB donc AIB isocèle. Donc $\widehat{IBA} =\widehat{IAB}$
          IA = IC donc AIC isocèle. Donc $\widehat{ICA} =\widehat{IAC}$
         Faisons la somme :  $\widehat{IBA} +(\widehat{IAB}+\widehat{IAC})+\widehat{ICA}=\widehat{IBA} +\widehat{BAC}+\widehat{ICA}=180^\circ$ (somme des angles d'un
         triangle)
         Mais $\widehat{IBA} +\widehat{IAB}+\widehat{IAC})+\widehat{ICA}=2\widehat{IAB}+2\widehat{IAC}=2(\widehat{IAB}+\widehat{IAC}=2\widehat{BAC}=180^\circ$
         Donc $\widehat{BAC}=90^\circ$ Donc BAC rectangle en A ?

Stop ou encore ?

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#79 20-06-2019 19:15:28

yannD
Membre
Inscription : 19-10-2018
Messages : 622

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

disons Stop
mais ce que je voulais savoir c'est surtout pourquoi avant on disait qu'un triangle est inscrit dans un demi-cercle si l'un de ses sommets est sur le cercle et les 2 autres représentent un diamètre
dans mon cours c'est avec un cercle et là dans le # 74 tu parles d'un demi-cercle

Hors ligne

#80 20-06-2019 19:16:53

yannD
Membre
Inscription : 19-10-2018
Messages : 622

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

tu dit que c'est bien plus précis mais pourquoi c'est plus précis de prendre le demi-cercle

Hors ligne

#81 20-06-2019 19:23:21

yannD
Membre
Inscription : 19-10-2018
Messages : 622

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

190620092326585346.png

Hors ligne

#82 21-06-2019 13:07:47

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 507

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

Bonjour,

tu dis que c'est bien plus précis mais pourquoi c'est plus précis de prendre le demi-cercle ?

Lis et réfléchis :
* On dit qu'un triangle est inscrit dans un cercle si ses 3 sommets sont sur le cercle.
* On dit qu'un triangle est inscrit dans un demi-cercle, si l'un des sommets est sur le cercle et que les 2 autres constituent les extrémités d'un diamètre....Ne trouves-tu pas de différences ?

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

#83 21-06-2019 13:12:27

yannD
Membre
Inscription : 19-10-2018
Messages : 622

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

Salut Yoshi, j'espère ne pas te faire trop perdre ton temps . . . mais j'ai un mal fou pour comprendre
et je retrouve les difficultés d'il y a 2 ans

Hors ligne

#84 21-06-2019 13:16:03

yannD
Membre
Inscription : 19-10-2018
Messages : 622

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

dans le 1er cas, on a 1 cercle
dans le 2e , c'est un demi-cercle

Hors ligne

#85 21-06-2019 13:47:15

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 13 507

Re : Montrer que les 3 hauteurs d'un triangle se coupent en un même point

Bin alors, c'est tout ce que tu vois comme différence ? tu n'as jamais appris à comparer deux textes ?
cercle et demi-cercle c'est une évidence.

Tu ne vois pas ce que ça entraîne comme précision dans l'un et pas dans l'autre de dire :
ABC est inscrit dans un demi-cercle
ou
ABC est inscrit dans un cercle ?

Relis les définitions...

J'ai toujours bassiné mes zèbres en leur serinant année après année : en mathématique, il y a 3 verbes absolument indispensables à connaître  et utiliser dans l'ordre : observer, comparer et déduire...


Arx Tarpeia Capitoli proxima...

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quinze plus dix-sept
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums