Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 02-03-2019 19:22:03

ccapucine
Membre
Inscription : 19-05-2018
Messages : 95

équation dans D

Bonjour
on considère dans $D'(\mathbb{R})$ l'équation suivante: $T''-4T=0$. On cherche une solution particulière $T_p= gH$ où $H$ est la fonction de Heaviside.
Je lis ceci: $T_p'= (gH)'= g' H+ gH'$ et $T_p''= g''H+2 g' H' + gH''$.
Mais tant qu'on ne sait pas si $gH$ est continue alors la dérivée au sens des distributions n'est pas identique à la dérivée au sens usuel. Je ne comprends donc pas comment on obtient ces expressions de $T_p'$ et $T_p''$?

Bien cordialement

Hors ligne

#2 02-03-2019 21:57:27

aviateur
Membre
Inscription : 19-02-2017
Messages : 172

Re : équation dans D

Rebonjour
Tu est certaine de la question ? Le second membre est nul c'est étonnant. Sur l'autre forum visiblement cela ne les dérange pas.

Dernière modification par aviateur (02-03-2019 23:40:55)

Hors ligne

#3 03-03-2019 17:08:04

ccapucine
Membre
Inscription : 19-05-2018
Messages : 95

Re : équation dans D

Tu as raison aviateur! le second membre c'est $\delta$.
Je trouve que $T"= g H" + 2 g' H' - g" H$ dans $\mathcal{D}'(\mathbb{R})$. Est-ce que vous trouvez la même chose?

Bien cordialement

Hors ligne

#4 03-03-2019 17:56:21

aviateur
Membre
Inscription : 19-02-2017
Messages : 172

Re : équation dans D

C'est pas un moins c'est un  +. 

Donc quand on remplace dans la bonne équation cela fait

[tex](g''-4 g) H+ 2 g'(0) \delta_0 +  g(0) (\delta_0) '  =\delta_0 [/tex]

Il faut donc  [tex]g''= 4  g[/tex]   c'est  à dire [tex]g(x)= a e^{2x} + b e^{-2x}   
[/tex]  et  il faut  2 g'(0)=1   et g(0)=0 qui est possible en choisissant bien a et b.

Dernière modification par aviateur (03-03-2019 17:57:20)

Hors ligne

#5 03-03-2019 17:59:11

ccapucine
Membre
Inscription : 19-05-2018
Messages : 95

Re : équation dans D

aviateur comment tu obtient $T"$ stp. C'est ce point là qui me pose problème, je n'arrête pas de refaire les calculs et je ne trouve pas ce qu'il faut

Hors ligne

#6 03-03-2019 18:23:52

aviateur
Membre
Inscription : 19-02-2017
Messages : 172

Re : équation dans D

On applique les règles de dérivation d'un produit: 
(u v)'=u'v +u v'  et puis (uv)''= (u'v+uv')'=u''v+ 2 u'v' + u v''   (règle de Leibniz)

Hors ligne

#7 03-03-2019 18:36:26

ccapucine
Membre
Inscription : 19-05-2018
Messages : 95

Re : équation dans D

Oui, c'est bien ce que j'ai appliqué. Voici le détail du calcul: soit $\varphi \in \mathcal{D}(\mathbb{R})$. On a:
$$
\langle (g H)'',\varphi \rangle = \langle gH,\varphi'' \rangle = \langle H, g \varphi'' \rangle.
$$
On a: $ (g \varphi)''= g'' \varphi + 2 g' \varphi' + g \varphi''$. Donc $g \varphi'' = (g \varphi)'' - g'' \varphi - 2 g' \varphi'$.
Ainsi
$$
\langle (g H)'', \varphi \rangle = \langle H, (g \varphi)'' \rangle - \langle H, g'' \varphi \rangle - 2 \langle H, g' \varphi' \rangle
= \langle H'', g \varphi \rangle - \langle H g'',\varphi \rangle - 2 \langle H, (g \varphi)' \rangle = \langle H'', g \varphi \rangle - \langle H g'',\varphi \rangle + 2 \langle H' g, \varphi \rangle
$$
Je ne comprends pas comment se débarrasser du moins. Où est l'erreur? Svp

Hors ligne

#8 03-03-2019 18:47:57

aviateur
Membre
Inscription : 19-02-2017
Messages : 172

Re : équation dans D

Je vois  déjà une erreur à la dernière ligne g'\phi'  devient (g phi)' et ça c'est faux. Donc déjà il faut corriger.
Ensuite pourquoi faire tous ces calculs avec le crochet de dualité. Tout se passe comme si tu ne voulais pas appliquer les règles de dérivation des distributions.  A moins qu'elles te soient inconnues ?

Hors ligne

#9 03-03-2019 18:55:49

ccapucine
Membre
Inscription : 19-05-2018
Messages : 95

Re : équation dans D

Mais on ne peut pas dérriver une distribution comme une dérivation usuelle si elle n'est pas continue de classe $C^1$. Et ici, la fonction H de Heaviside n'est pas continue! Alors comment on peut dériver $gH$ de manière usuelle sans crochets?

Hors ligne

#10 03-03-2019 19:17:02

aviateur
Membre
Inscription : 19-02-2017
Messages : 172

Re : équation dans D

Je crois tu n'as pas fait la synthèse et que tu ne me comprends donc pas: 
Par exemple la règle de dérivation (uv)'  =u'v +u v'  (valable pour les fonctions au sens classique) reste vraie pour des distributions.
C'est important de le savoir et la démonstration se fait en revenant au définition et dc avec les crochets de dualité.
Donc pour les dérivées supérieures aussi.  Mais une fois cela acquis il faut appliquer la règle.
Donc  si T=gh  ,  si j'écris T'=(gH)'  il s'agit de la dérivée au sens des distributions mais la règle ne change pas  comme je l'ai dit au dessus.

Alors tout bêtement T''= g''H +2 g' H'  +   g H''  ( bien entendu il s'agit de dérivée au sens des distributions).

Ensuite il faut simplifier g'H' et g H''    .   [tex]g'H' =g(0)\delta_0[/tex]  et  [tex]g H'' = g(0) \delta'_0[/tex]. 

Bien entendu si tu veux t'en convaincre tu peux refaire le calcul.

Déjà [tex] H'=\delta_0[/tex]  c'est hyper, hyper classique     (pour le retrouver tu fais  <H',\phi> = -<H, fi'>= .....=\phi(0)  donc [tex]H'=\delta 0[/tex])


Donc je te laisse faire pour montrer que [tex]g'H'=g(0)\delta_0[/tex] et bien sûr [tex]g H'' = g(0) \delta'_0[/tex].   c'est complètement analogue

Hors ligne

#11 03-03-2019 19:35:13

ccapucine
Membre
Inscription : 19-05-2018
Messages : 95

Re : équation dans D

Merci beaucoup aviateur! Donc toutes les formules de dérivations usuelles sont valables au sens des distributions.

Hors ligne

#12 03-03-2019 19:36:37

ccapucine
Membre
Inscription : 19-05-2018
Messages : 95

Re : équation dans D

Avez vous une fonction linéaire intéressante et originale telle qu'on puisse montrer que c'est une distribution, calculer son support et trouver qu'il est compact?

Hors ligne

#13 03-03-2019 19:48:34

aviateur
Membre
Inscription : 19-02-2017
Messages : 172

Re : équation dans D

ccapucine a écrit :

Avez vous une fonction linéaire intéressante et originale telle qu'on puisse montrer que c'est une distribution, calculer son support et trouver qu'il est compact?

La je me pose des questions!!

Hors ligne

#14 03-03-2019 19:53:16

ccapucine
Membre
Inscription : 19-05-2018
Messages : 95

Re : équation dans D

C'est pour m'entrainer à trouver le support d'une distribution.

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quarantesept moins trente trois
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums