Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 28-07-2018 07:51:07

didier
Invité

limite superieur et valeur d'adhérence

Bonjour, je désire résoudre la question suivante et j'aimerai avoir votre aide:

Soit $(u_n)_{n \in \mathbb{N}}$ une suite de $\overline{\mathbb{R}}.$ Prouver que $\limsup_n u_n$ est une valeur d'adhérence.

Alors, je vais prendre $k_n=\sup_{n \leq k }u_k,$ on a $\limsup_n=\inf_{n \in \mathbb{N}}k_n$ pour verifier qu'elle est une valeur d'adhérence il faut prouver qu'il existe une sous-suite qui converge vers $\limsup_nu_n,$ j'ai essayé d'utiliser les propriété caractéristiques du sup et de l'inf :
$\forall \epsilon>0, \exists n_0 \in \mathbb{N};\limsup_nu_n+\epsilon > \sup_{n_0 \leq k},$ mais le problème que ces propriétés ne sont valables que ci le sup et l'inf existent dans $\mathbb{R},$ par exemple si $\limsup_n=+\infty$ ces propriétés sont fausses,

Alors que faut il faire alors?

Merci d'avance

#2 09-08-2018 14:48:32

Dattier
Membre
Inscription : 10-09-2017
Messages : 330
Site Web

Re : limite superieur et valeur d'adhérence

Bonjour,

Il suffit de distinguer 2 cas :

1/ $\forall n \in \mathbb N, \sup\{u_k \text{ ; } k\geq n\}=\max\{u_k \text{ ; } k\geq n \}$

2/ $\exists n\in \mathbb N, \sup\{u_k \text{ ; } k \geq n \} \notin \{u_k \text{ ; } k \geq n \} $

Essai de conclure dans chacun de ces 2 cas complémentaires.

Bonne journée.

Dernière modification par Dattier (09-08-2018 14:50:11)


Raisonnement exact : A est exacte si avec 10 exemples et pas de contre-exemples connus des concernés

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?34 - 30
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums