Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 09-04-2018 16:24:40

Binks
Invité

Aide exercice composition de fonctions

Bonjour à tous,

Dans un exercice, je bloque un peu sur cette question.

On a les fonctions [tex]f[/tex] et [tex]g[/tex] telles que :

[tex]\forall x \in [-1,1], f(x) = \arcsin(2x\sqrt{1-x^2})[/tex] et [tex]\forall x \in [-\frac{\pi}{2},\frac{\pi}{2}], g(x) = \sin(x)[/tex].

Il faut déterminer l'application [tex]f \circ g[/tex]. Il me semble que l'on a :

[tex]\forall x \in [-1,1], h(x) = f(g(x)) = \arcsin(2\sin(x)\sqrt{1-\sin(x)^2})[/tex] ce qui en développant donne [tex]2x[/tex] si je ne me trompe pas.

Il faut alors en déduire une expression plus simple de [tex]f[/tex]. Et c'est là que j'ai un peu de mal.. Pourriez-vous m'aider ?

Merci beaucoup.

#2 09-04-2018 20:06:12

Yassine
Membre
Inscription : 09-04-2013
Messages : 1 090

Re : Aide exercice composition de fonctions

Bonsoir,

Tu as donc $f(g(x))=2x$, si tu poses $u=g(x)$, donc $x=g^{-1}(u)$
Tu as alors $f(u)=2x=2g^{-1}(u)=2\arcsin(u)$


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#3 09-04-2018 20:50:55

Binks
Invité

Re : Aide exercice composition de fonctions

Merci Yassine pour cette technique.

Par curiosité, je remarque que la première définition de [tex]f[/tex] a ses valeurs dans [tex]]-\frac{\pi}{2},\frac{\pi}{2}[[/tex] et que la deuxième est dans [tex]]-\pi, \pi[[/tex], cela est-il gênant, i.e. cela veut-il dire que la seconde définition de [tex]f[/tex] est fausse ?

D'autre part, je remarque que ces deux définitions n'ont pas la même représentation graphique, et pourtant le raisonnement semble juste, saurais-tu dire pourquoi ?

Merci beaucoup.

#4 10-04-2018 06:34:05

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 11 695

Re : Aide exercice composition de fonctions

Bonjour,

Depuis hier soir :

$\forall x$ [tex]\in [-1,1][/tex], [tex]h(x) = f(g(x)) = \arcsin(2\sin(x)\sqrt{1-\sin(x)^2})[/tex]

me chiffonne...
Pour moi, c'est $\forall x$ [tex]\in \left[-\dfrac{\pi}{2}\,;\,\dfrac{\pi}{2}\right][/tex] : ici x est un angle...
Exemple.
Je pose
[tex]x= 0.9659258262890683\; \left(\approx \sin\left(\dfrac{5\pi}{12}\right)\right)[/tex]
[tex]X=\dfrac{5\pi}{12}[/tex]

[tex]\arcsin(2x\sqrt{1-x^2})\approx 0.5235987755982985[/tex]  ici x est un sinus donc [tex] x\in[-1\,;\,1][/tex]

[tex]\arcsin(2\sin(X)\sqrt{1-sin^2(X)}\approx 0.5235987755982985[/tex] ici X est un angle donc [tex]X \in\left[-\dfrac{\pi}{2}\,;\,\dfrac{\pi}{2}\right][/tex]

Et donc [tex]2X \in[-\pi\,;\,\pi][/tex]
Mais cela cela change pas le domaine de définition de f(g(X)) ou celui de f(x).

@+

Dernière modification par yoshi (10-04-2018 07:54:29)


Arx Tarpeia Capitoli proxima...

Hors ligne

#5 10-04-2018 15:14:03

Binks
Invité

Re : Aide exercice composition de fonctions

Bonjour,

Merci pour votre réponse.

Bien sûr.. c'est [tex]\forall x \in ]-\frac{\pi}{2},\frac{\pi}{2}[, f(g(x)) = \; ...[/tex]

Par contre, je remarque que selon la définition de la composée de [tex]g[/tex] par [tex]f[/tex], on devrait avoir le même ensemble d'arrivée pour [tex]f[/tex] et [tex]f \circ g[/tex].. Et je ne comprends pas bien pourquoi cela n'est pas le cas..

#6 12-04-2018 22:55:47

Binks
Invité

Re : Aide exercice composition de fonctions

Une idée d'explication ?

#7 14-04-2018 12:11:54

Yassine
Membre
Inscription : 09-04-2013
Messages : 1 090

Re : Aide exercice composition de fonctions

Bonjour,
Je pense que l'erreur vient de ton premier calcul, à savoir que $f(g(x))=2x$. Tu as dû utiliser à un moment le fait que $\arcsin(\sin(2x))=2x$. Or, ça n'est vrai que si $2x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, et donc que $x \in [-\frac{\pi}{4}, \frac{\pi}{4}]$.
Tu devra donc distinguer trois cas :
1) $x \in [-\frac{\pi}{2}, -\frac{\pi}{4}]$
2) $x \in [-\frac{\pi}{4}, \frac{\pi}{4}]$
3) $x \in [\frac{\pi}{4}, \frac{\pi}{2}]$


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#8 14-04-2018 18:15:36

Binks
Invité

Re : Aide exercice composition de fonctions

Bonjour,

Oui, la vilaine erreur... Merci encore pour ta réponse.
Je vois que graphiquement, dans les autres cas, la composée vaut [tex]-2x[/tex].
J'ai pensé à écrire :

1) si [tex]2x \in [\pi,-\frac{\pi}{2}][/tex] alors [tex]2x+\pi \in [0,\frac{\pi}{2}][/tex] et donc [tex]\arcsin(\sin(2x+\pi)) = \arcsin(-\sin(2x)) = -2x[/tex]

3) si [tex]2x \in [\frac{\pi}{2}, \pi][/tex] alors [tex]2x+\pi \in [-\frac{\pi}{2},0][/tex] et donc [tex]\arcsin(\sin(2x+\pi)) = \arcsin(-\sin(2x)) = -2x[/tex]

Penses-tu que cela est juste ?

#9 14-04-2018 19:11:49

Black Jack
Membre
Inscription : 15-12-2017
Messages : 22

Re : Aide exercice composition de fonctions

Salut,

f(g(x)) = arcsin(2.sin(x).V(1-sin²(x))  pour x compris dans [-Pi/2 ; Pi/2]

Comme sur [-Pi/2 ; Pi/2], on a : cos(x) = V(1 - sin²(x)) (car positif), on a :

f(g(x)) = arcsin(2.sin(x).cos(x))  pour x compris dans [-Pi/2 ; Pi/2]

f(g(x)) = arcsin(sin(2x))  pour x compris dans [-Pi/2 ; Pi/2]

MAIS ATTENTION, on n'a pas arcsin(sin(2x)) = 2x

Pour t'en persuader essaie par exemple de calculer (à la calculette) pour x = 1 (qui est bien compris dans [-Pi/2 ; Pi/2])

arcsin(sin(2*1)) = 1,14159... qui n'est pas égal à 2x = 2*1 = 2 (ni égal à -2x = -2)

On a bien arcsin(sin(2x)) = 2x  pour x compris dans [-Pi/4 ; Pi/4] ...

Mais il te reste à réfléchir pour x compris dans [-Pi/2 ; -Pi/4[ et dans ]Pi/4 ; Pi/2]

... et pour ces intervalles, la réponse n'est pas -2*x comme tu le suggères.

Petite aide complémentaire :

Si on reprend le calcul pour x = 1:

arcsin(sin(2*1)) = 1,14159...
-2x = -2
on n'a pas 1,14159... = -2, mais en regardant bien on a -2 + Pi = 1,14159...

Ce n'est pas un hasard.

Et pense aussi à faire un calcul (calculette) par exemple pour x = -1 ...

Cela devrait te mettre sur la voie.

Hors ligne

#10 14-04-2018 21:00:45

Binks
Invité

Re : Aide exercice composition de fonctions

Merci beaucoup pour ta réponse.

Après réflexion, on pourrait plutôt dire que :

1) si [tex]x \in ]\frac{\pi}{4},\frac{\pi}{2}], \arcsin(\sin(2x)) = -2x +\pi[/tex]
2) déjà vu
3) si [tex]x \in [-\frac{\pi}{2},-\frac{\pi}{4}[, \arcsin(\sin(2x)) = -2x -\pi[/tex]

Je ne mets pas tout le raisonnement, mais cela semble plus juste n'est-ce pas ?

En tous cas, cela a l'air de résoudre les interrogations graphiques que j'avais, et d'obtenir une simplification exacte de [tex]f[/tex], pour les trois intervalles déterminés..

#11 15-04-2018 10:24:56

Yassine
Membre
Inscription : 09-04-2013
Messages : 1 090

Re : Aide exercice composition de fonctions

Bonjour,
Oui, ça me parait correct.


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?58 - 38
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums