Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 07-03-2018 15:03:48

tiMATHée
Invité

Conditions minimales pour le procédé de Gram-Schmidt

Bonjour à tous et à toutes,

mon probleme est le suivant :

je cherche a savoir quelles sont les conditions minimales pour pouvoir appliquer le procédé de Gram-Schmit.
On peut noter K notre corps, p une forme bilineaire symetrique non dégénée sur Kn, ou n peut etre infini (denombrable ici),
Et on a une famille finie (p)i lineairement indépendante de Kn, avec les vecteurs non isotropes.

Est-ce qu'on peut appliquer Gram-Schmidt, ou il faut rajouter des hypotheses (forme definie, corps infini non denombrables...)
Bon dans l'idée le corps est munie d'une topologie et n'est pas discret

Si quelqu'un à une idée :)

Merci !

(Pour les curieuses et les curieux, cela me sert sert a calculer les groupes d'homoopies des variétés de Stiefield, et ainsi generalise au plus possible le resultat du Hatcher, p. 382)

ps : désolé il manque des accents, mais je suis sur un qwerty et c'est très pratique)

#2 07-03-2018 16:34:36

Fuchur
Membre
Inscription : 07-03-2018
Messages : 4

Re : Conditions minimales pour le procédé de Gram-Schmidt

Bonjour,

je n'ai pas de réponse à ta question, seulement quelques remarques :


Dans le procédé de Gram-Schmidt on veut normaliser les vecteurs obtenus; donc il te faut que
$p(v,v)$ est un carré non-nul dans ton corps pour chaque vecteur $v$ non-nul.

Par contre, vu que tu n'as qu'un nombre fini de vecteurs (et donc pas de problème de convergence du procédé), la topologie de ton corps $K$ et de $K^n$ n'intervient pas.

Bonne journée.

P.S. Tu parles de variétés de Stiefel ??? au lieu de Stiefield ???

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante (donner le résultat en chiffres)?
quatre-vingt quatorze plus quatre-vingt dix-huit
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums