Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 25-01-2018 10:04:11

uni
Membre
Inscription : 25-11-2017
Messages : 61

série entière

Bonjour
j'ai la question suivante: donner une condition suffisante sur la suite $(a_n)$ pour que l'application qui à $\varphi \in \mathcal{D}(\mathbb{R})$ associe $\sum_{n \mathbb{N}^\star} a_n \varphi(\dfrac{1}{n})$ soit une distribution.

à vrai dire, je ne sais par où commencer. Merci pour toute aide.

Hors ligne

#2 25-01-2018 12:23:42

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 005

Re : série entière

Bonjour

  Si on te demande juste une condition suffisante il y en a beaucoup ! Par exemple si la suite est identiquement nulle ça fonctionne ! Plus intéressant essaie la condition  $ \sum_n |a_n| $ converge.

F

Hors ligne

#3 25-01-2018 12:25:56

uni
Membre
Inscription : 25-11-2017
Messages : 61

Re : série entière

Justement j'y ai pensé, et ça me perturbe beaucoup.
Pour que cette application soit une distribution il faut: que ce soit une application, linéaire et continue.
Donc cette condition suffisante c'est pour que que ça soit une application bien définie? Ou pour la continuité?

Hors ligne

#4 25-01-2018 13:11:06

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 005

Re : série entière

Les deux !

Hors ligne

#5 25-01-2018 17:35:30

uni
Membre
Inscription : 25-11-2017
Messages : 61

Re : série entière

Donc d'abord pour que cette application soit bien définit, c'est à dire $\sum_{n \in \mathbb{N}^\star} a_n \varphi(\dfrac{1}{n}) < +\infty$ pourquoi il suffit d'avoir $\sum_n |a_n| < +\infty$? on peut avoit $\varphi(1/n)=1$ pour tout $n$ grand et dans ce cas la série diverge. Ou je me trompe?

Hors ligne

#6 25-01-2018 18:02:54

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 005

Re : série entière

Ben oui tu te trompes ! Pourquoi la série serait divergente ?

Hors ligne

#7 27-01-2018 11:32:22

uni
Membre
Inscription : 25-11-2017
Messages : 61

Re : série entière

J'ai passé des jours à y penser, et en fait pourquoi la condition est $\sum_n a_n$ et pas $\sum_n a_n \varphi(1/n)$?

Hors ligne

#8 27-01-2018 18:34:46

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 005

Re : série entière

C'est assez clair, non? Si $\sum_n |a_n|$ converge, alors puisque $|a_n \varphi(1/n)|\leq \|\varphi\|_\infty |a_n|$, la série $\sum_n a_n\varphi(1/n)$ converge (absolument).

Hors ligne

#9 04-02-2018 09:37:45

uni
Membre
Inscription : 25-11-2017
Messages : 61

Re : série entière

Bonjour,
une question bête mais voilà.  En fait est ce qu'on appelle $\sum_n a_n \varphi(1/n)$ série entière ou bien série numérique? Parce qu'une série entière doit être de la forme $\sum_n a_n z^n$. Donc on ne dit pas de la série $\sum_n a_n \varphi(1/n)$ qu'elle est entière. Non?

Hors ligne

#10 04-02-2018 22:01:58

Fred
Administrateur
Inscription : 26-09-2005
Messages : 5 005

Re : série entière

Oui, c'est une série numérique. Une série entière, c'est une série de fonctions de la forme $\sum a_n z^n$.

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?26 + 91
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums