Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 24-01-2018 09:55:25

Hime12
Membre
Inscription : 24-01-2018
Messages : 1

Exercice sur les dérivées

Bonjour,

je poste cet exercice pour pouvoir avoir des indications sur les questions car franchement je bloque completement dessus, voici l'énoncé:

Le coût (en K€) de production q unités d'une marchandise(0<q<800) est donné par la fonction:
$C(q)=10^{-7}q^3-1,3\times 10^{-4} q^2+0,06q$
On donne sa courbe représentative.
1)  Déterminer graphiquement C(600).On fere apparaitre tous les traits de construction(question faite).
2)  Calculer C(600) et C(601).
     En déduire le coû t de la 601eme pièce.
3) Déterminer la dérivée C' de C et calculer C'(600).Que constate-on.Expliquer?
4) On définit le coût moyen de production par: [tex]Cm(q)= \frac{C(q)}{q}[/tex]
     a) déterminer graphiquement la valeur pour laquelle ce coût parait minimal.
     b) donner l'expression de Cm(q) en fonction de q.
         Retrouver algébriquement la réponse de la question a.
     c)  comparer alors pour cette valeur la coût moyen et le coût marginal.

Merci d'avance.

Hors ligne

#2 24-01-2018 10:44:27

yoshi
Modo Ferox
Inscription : 20-11-2005
Messages : 11 550

Re : Exercice sur les dérivées

Bonjour,

franchement je bloque completement dessus

Franchement, tu pousses un peu...
La question 2 est à ta portée si tu disposes d'une calculette scientifique, même niveau Collège.
Coût de la 601e pièce.
Il ne t'a pas frappé qu'on te demande de calculer C(600) et C(601) ???
C(600), c'est d'après l'énoncé "Le coût  de production (en k€) de 600 unités d'une marchandise"...
C(601), c'est d'après l'énoncé "Le coût  de production (en k€) de 601 unités d'une marchandise"...
Pourquoi la valeur de 601 pièces n'est-elle pas la même que celle de 600 ?
Réponse : parce qu'il y a une ] pièce supllémentaire, la 601e dont il est question... Alors ?

Dérivée de C. N'importe que Lycéen sérieux dans ta positionn sait calculer cette dérivée.
Pas toi ?
[tex]Cm(q)= \frac{C(q)}{q}[/tex] Alors, Cm(q) = ?
Soi un coefficient réel a quelconque et q ta variable : [tex]\left(a\times q^n\right)'= n \times a\times q^{n-1}[/tex]

Une fonction f passe par un extremum (minimum ou maximum), en un point d'abscisse q lorsque lorsque f('q) = 0

Voilà de quoi bosser.
Reviens avec ce que tu as trouvé.

@+


Arx Tarpeia Capitoli proxima...

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?47 + 15
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums