Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 03-01-2018 10:59:51

JohnDoe
Membre
Inscription : 05-12-2017
Messages : 4

domaine de définition d'une fonction

Bonjour,
Je viens de commencer mon cours de continuité, limites de fonctions en Analyse et je ne comprends pas pourquoi  chaque fois qu'on définit une fonction :  f : A --> R(ensemble des réels)
On précise tjrs que A est inclus dans R ou encore A est un interval de R.

Je ne comprends pas pourquoi mais je retrouve ça partout.
Je sais que la question est un peu bizarre mais j'éspére que c'est quelque chose d'évident et que quelqu'un saura de quoi je parle sur ce forum.
Merci bien.

Hors ligne

#2 03-01-2018 11:41:37

Yassine
Membre
Inscription : 09-04-2013
Messages : 1 090

Re : domaine de définition d'une fonction

Bonjour JohnDoe,
je ne suis pas sûr de bien voir ce qui te pose problème.
Quand on définit un fonction, il faut donner l'ensemble de départ et l'ensemble d'arrivée.
Quand un des ensembles est connu, (comme ici, l'ensemble des réels), on indique simplement sa lettre usuelle (ex. $\mathbb{R}$ ou $\mathbb{N}$). Si c'est un ensemble quelconque, il faut le définir : intervalle de  $\mathbb{R}$, partie finie de $\mathbb{N}$, etc.

Autre précision, quand on écrit $f: A \to B$, on suppose implicitement que pour tout $x \in A$, on est capable de connaitre l'image par $f$ de $x$, notée $f(x)$. Le domaine de définition de $f$ est donc $A$ tout entier.
Par abus, certains écrivent $f: \mathbb{R} \to \mathbb{R}$ même si $f$ peut ne pas être définie pour tous les réels (ex. $\sqrt{x}$) et demandent ensuite de trouver le domaine de définition de $f$. C'est un abus de notation.


L'ennui dans ce monde c'est que les idiots sont sûrs d'eux et les gens sensés pleins de doutes. B. Russel

Hors ligne

#3 03-01-2018 12:01:40

Vladimir
Membre
Inscription : 01-01-2018
Messages : 10

Re : domaine de définition d'une fonction

Bonjour,
on précise dans votre cours que le domaine de définition A est inclus dans R car il existe aussi des fonctions de la variable complexe, des fonctions à plusieurs variables,  etc . On veut préciser ainsi qu'il s'agit d'une fonction à une variable et que la variable est réelle. C'est important pour la définition de la limite et de la continuité qui est restreinte à ce cadre là.

Dernière modification par Vladimir (03-01-2018 12:03:15)

Hors ligne

#4 04-01-2018 13:04:25

JohnDoe
Membre
Inscription : 05-12-2017
Messages : 4

Re : domaine de définition d'une fonction

Je comprend !
Il à l'air sympa le chapitre sur la continuité, j'éspére qu'il le sera.
Merci beaucoup les gars !

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?5 + 30
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums