Bibm@th

Forum de mathématiques - Bibm@th.net

Bienvenue dans les forums du site BibM@th, des forums où on dit Bonjour (Bonsoir), Merci, S'il vous plaît...

Vous n'êtes pas identifié(e).

#1 23-12-2017 01:34:16

soufian
Membre
Inscription : 22-12-2017
Messages : 8

mesurabilté et integrabilité d'une fonction

sallut a tous ; j'ai besion de l'aide pour cet exercice car il est un peu compliqué et Merci d'avance


soit ƒ une fonction de ℝ dans ℝ .
1) Montrer que ƒ est mesurable si et seulement si pour tout q∈ℚ , l’ensemble {x : f(x)>q} est mesurable .
2) Soit x₀ un réel , montrer directement que l’application x → ƒ(x+x₀) est mesurable .
3)  Meme question pour l'appliaction x → ƒ(kx) ou k⋲ℝ .
4)  soif ƒ une fonction intégrable, montrer que la fonction x → ƒ(x+x₀) est intégrable et que ∫ℝ ƒ(x)dλ ₌ ∫ℝƒ(x+x₀)dλ .on commencera par demontrer la relation pour les fonctions indicatriaces .
5)  soif ƒ une fonction intégrable, montrer que la fonction x → ƒ(kx) est intégrable et que    ∫ℝ ƒ(xk)dλ ₌∣k∣ ∫ℝƒ(x)dλ .
6) Etudier la mesurabilité et l'intégrabilité de la fonctions definie sur ℝ² par :

ƒ(x,y)= (x-y)/max(x³,y³) si x≥1,y≥1  ƒ(x,y)=0 ailleurs .

Dernière modification par soufian (23-12-2017 01:42:46)

Hors ligne

#2 23-12-2017 06:46:43

Fred
Administrateur
Inscription : 26-09-2005
Messages : 4 797

Re : mesurabilté et integrabilité d'une fonction

Bonjour

  Et toi qu'as tu fait dans cet exercice ?

Fred

Hors ligne

#3 23-12-2017 11:13:30

soufian
Membre
Inscription : 22-12-2017
Messages : 8

Re : mesurabilté et integrabilité d'une fonction

Bonjour Fred ;
A partir de la question 2 j'ai rien compris
Pourriez vous m'aider pour cet exercice svp et Merci

Hors ligne

#4 23-12-2017 11:33:58

soufian
Membre
Inscription : 22-12-2017
Messages : 8

Re : mesurabilté et integrabilité d'une fonction

car on n'a  pas d'information sur la fonction ƒ  c'est a dire comment on va montrer que  l’application x → ƒ(x+x₀) est mesurable et ƒ  quelconque !!?

soufian

Hors ligne

#5 23-12-2017 12:22:40

Fred
Administrateur
Inscription : 26-09-2005
Messages : 4 797

Re : mesurabilté et integrabilité d'une fonction

Il faut supposer que  $ f $  est mesurable sinon ce serait faux. Si tu as cette hypothèse tu travailles avec la composée de deux fonctions mesurables.

Hors ligne

#6 23-12-2017 14:47:12

soufian
Membre
Inscription : 22-12-2017
Messages : 8

Re : mesurabilté et integrabilité d'une fonction

d'aprés vous ;
on suppose que ƒ est mesurable et on pose h(x)=x+x₀  qui est mesurable car elle est continue
et comme ƒ(x+x₀)=ƒ∘h(x) alors elle est mesurable comme composition de deux fonctions mesurables ..
...et donc ça sera la meme chose pour la question 3)
Merci beaucoup Fred

soufian

Dernière modification par soufian (23-12-2017 14:52:12)

Hors ligne

#7 23-12-2017 23:33:14

soufian
Membre
Inscription : 22-12-2017
Messages : 8

Re : mesurabilté et integrabilité d'une fonction

pour la question 4) vous avez une idée ?!
j'ai besion de cet exercice si vous avez des idées aide moi pour le résoudre svp

Hors ligne

#8 24-12-2017 08:26:51

Fred
Administrateur
Inscription : 26-09-2005
Messages : 4 797

Re : mesurabilté et integrabilité d'une fonction

Comme c'est écrit on commence par les fonctions indicatrices. C'est presque évident par invariance de la mesure de Lebesgue par translation. C'est ensuite vrai pour les combinaisons linéaires de fonctions indicatrices.
Ensuite on montre l'égalité pour les fonctions mesurables positives en les approchant par une suite croissante de fonctions étagées.

Hors ligne

#9 25-12-2017 14:54:03

soufian
Membre
Inscription : 22-12-2017
Messages : 8

Re : mesurabilté et integrabilité d'une fonction

votre idée est claire Fred mais je ne sais comment  l'appliquer
si tu veux ,peux tu l'appliquer et Merci

Hors ligne

Réponse rapide

Veuillez composer votre message et l'envoyer
Nom (obligatoire)

E-mail (obligatoire)

Message (obligatoire)

Programme anti-spam : Afin de lutter contre le spam, nous vous demandons de bien vouloir répondre à la question suivante. Après inscription sur le site, vous n'aurez plus à répondre à ces questions.

Quel est le résultat de l'opération suivante ?10 - 7
Système anti-bot

Faites glisser le curseur de gauche à droite pour activer le bouton de confirmation.

Attention : Vous devez activer Javascript dans votre navigateur pour utiliser le système anti-bot.

Pied de page des forums